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ABSTRACT 
The microsound synthesis framework in the LC computer 
music programing language integrates objects and library 
functions that can directly represent microsounds and re-
lated manipulations for microsound synthesis. Together 
with the mechanism that enables seamless collaboration 
with the unit-generator-based sound synthesis framework, 
such abstraction can help provide a simpler and terser pro-
graming model for various microsound synthesis tech-
niques.  

However, while the microsound synthesis framework can 
achieve practical real-time sound synthesis performance in 
general, it was observed that temporal suspension in sound 
synthesis can occur, when a very large microsound object 
beyond microsound time-scale is manipulated, missing the 
deadline for real-time sound synthesis.  

In this paper, we describe our solution to this problem. By 
lazily evaluating microsound objects, computation is de-
layed until when the samples are actually needed (e.g., for 
the DAC output), and, when performing the computation, 
only the amount of samples required at the point is com-
puted; thus, temporal suspension in real-time sound syn-
thesis can be avoided by distributing the computational 
cost among the DSP cycles. Such a solution is beneficial 
to extend the application domains of the sound synthesis 
framework design beyond microsound synthesis towards 
more general sound synthesis techniques. 

1. INTRODUCTION 
Today, microsound synthesis techniques [1] already con-
stitute an important part of digital sound synthesis tech-
niques for musical creation, being used for both non-real-
time and real-time sound synthesis. Unlike many other 
sound synthesis techniques that conceptualize sounds as 
functions of time, microsound synthesis conceptualizes the 
sound as a composition of many short sound particles that 
overlap-add onto each other. Such a significant conceptual 
difference led to the question if the traditional unit-gener-
ator concept [2, p.89], which describes a sound synthesis 
algorithm by software modules that stream sample data to 

each other, is still appropriate also for microsound synthe-
sis. While there have not been many examples, some pre-
vious works investigate more suitable software abstrac-
tions for microsound synthesis for this reason. 

The LC computer music programming language [3] that 
we developed is one of the most recent examples of this 
kind, which takes microsound synthesis techniques into 
account in the software abstraction. The microsound syn-
thesis framework in the LC language [4] significantly dif-
fers from existing unit-generator-based synthesis frame-
works and integrates objects and library functions that can 
directly represent microsounds and related manipulations 
in microsound synthesis. Such abstraction contributes to 
describing various microsound synthesis techniques much 
simpler and terser in comparison with many existing unit-
generator languages and can realize microsound synthesis 
in real-time.  

Yet, as we previously described in [4], temporal suspen-
sion of real-time sound synthesis can be observed in cer-
tain situations; as LC’s microsound objects are arrays of 
sample values (with useful methods) in nature, when ma-
nipulating a microsound object of a very large size, far be-
yond the microsound time-scale, the deadline for the real-
time sound synthesis can be missed, causing temporal sus-
pension of the audio output audible to human ears. We also 
described that this issue has normally not been observed in 
most practical situations when the sizes of microsound ob-
jects stay reasonably within the microsound time-scale and 
microsounds are manipulated sporadically as assumed by 
the sound synthesis framework. Yet, it is still desirable to 
avoid such temporal suspensions by large microsound ob-
jects to extend the application domain to more general ap-
plications beyond microsound synthesis. 

In this paper, we propose a solution to this problem by 
adopting lazy evaluation to the microsound synthesis 
framework. Instead of eagerly evaluating the results of ma-
nipulations right when they are performed, the evaluation 
is delayed until when the result is actually required. Also, 
the evaluation takes place only for the number of samples 
required at that point, rather than for the entire microsound 
object; thus, by the adoption of lazy evaluation to the ma-
nipulation of microsound objects, the pause time can be 
significantly reduced and temporal suspension can be 
avoided in most practical situations, even when manipulat-
ing large microsound objects.  
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To assess the actual performance efficiency without being 
influenced by other factors in the language implementation 
(e.g., memory allocation, garbage-collection, or task-
switching), we implemented a testing software framework 
and measured the performance efficiency in C++. The re-
sults showed a significant reduction of pause time, just as 
expected.  

Such adoption of lazy evaluation to microsound objects, 
not only solves the issue of the temporal suspensions in 
most practical situations, but can also contribute to making 
the microsound synthesis framework more stable at 
runtime, by distributing the computational cost beyond one 
DSP cycle; this is quite favorable towards more general 
applications of the sound synthesis framework design,  
certainly beyond microsound synthesis. 

2. RELATED WORK 

2.1 Microsound Synthesis 

Microsound synthesis was first brought to the practice of 
computer music around the early 1970s1. Since then, vari-
ous sound synthesis techniques of the kind have been de-
veloped. This includes granular synthesis [5], formant 
wave-function (FOF) (from function d’onde formantique) 
[6], FOF synthesis [7], and waveset synthesis [8], all these 
belonging the family of microsound synthesis.  

While many other synthesis techniques that conceptualize 
a sound as a function of time (such as additive synthesis, 
subtractive synthesis and FM synthesis), microsound syn-
thesis conceptualizes sound quite differently. Generally 
speaking, in microsound synthesis, the entire sound output 
is composed of many short sound particles (i.e., mi-
crosounds) that overlap-add onto each other. The duration 
of such short sound particles extends from “the thread of 
timbre perception (several hundred micro seconds) up to 
the duration of a short sound object (~100 msec)” to “the 
boundary between the audio frequency range (approxi-
mately 20 Hz to 20 kHz) and the infrasonic frequency 
range (below 20 Hz)” [1, p.21].  

In fact, Gabor, whose theory had a significant influence on 
the origins of microsound synthesis, already contrasted his 
theory to “the orthodox method of analysis … [which] 
starts with the assumption that the signal is a function (t) 
of time t” [9]. 

2.2 Software Frameworks for Microsound Synthesis 

Such a theoretical difference as described earlier led to the 
question of whether the traditional unit-generator concept 
is appropriate for microsound synthesis2.  

                                                
1 For instance, one of the earliest examples of microsound synthesis was 
the implementation of ascynronous granular synthesis in MUSIC-V by 
Curtis Roads in 1974. Roads [1, p.110]. 
2 If interested, see [2] for the detailed discussion by Nishino et al. 
3 Blackwell and Green list such activities as sketching; design of typog-
raphy, software, etc.; other cases where the final product cannot be envis-
aged and has to be ‘discovered’ as the examples of exploratory design 

Typically, in unit-generator languages, microsound syn-
thesis techniques are normally realized by unit-generators, 
which encapsulate microsound synthesis techniques 
within, or by implementing microsounds as note-level 
sound objects and scheduling them with the user program. 

Yet, some computer music researchers discuss that such 
implementations may not be appropriate for microsound 
synthesis. In [10], Brandt argues that “Music-N languages 
like Csound [11],” which are typical unit-generator lan-
guages, “are too limited” and not appropriate for FOF syn-
thesis, since “the stream [of grains in FOF synthesis] is ir-
regularly timed, and a grain is a sequence of samples”. 
Brandt also puts forth that the unit-generator concept is a 
“black-box primitive” in computer music language in na-
ture and is problematic as “if a desired operation is not pre-
sent, and cannot be represented as a composition of primi-
tives, it cannot be realized within the language” [12, pp.4-
5]. 

In [4], we too maintained that the unit-generator concept 
may not be truly beneficial for end-users even when note-
level objects and scheduling algorithms are utilized for the 
implementation of a certain microsound synthesis tech-
nique and provided as a library function, especially when 
considering creative explorations by users. Even though 
the complicated implementation is hidden inside the li-
brary function, if the user needs to alter the sound synthesis 
algorithm beyond what is provided by the function, the 
user has to modify the hidden implementation within the 
library function; such a situation is clearly not desirable to 
support the activities of exploratory understanding and ex-
ploratory design3. 

Based on such considerations, researchers and developers 
have been investigating alternative software abstractions 
that are suitable for microsound synthesis. For example, 
Bencina’s object-oriented software framework design for 
a granular synthesizer includes the objects that directly 
represent grains (microsounds). Brandt’s Chronic lan-
guage is another example [12]. Chronic is a computer mu-
sic language built upon the OCaml language [13]. Brandt 
proposed the ‘temporary type constructor’ concept, which 
introduces “a relation to a one-dimension axis, which we 
call time” to type constructors4. In doing so, for example, 
the audio stream of granular synthesis can be defined by 
the type of “Sample vec event ivec.”; each grain is repre-
sented by Sample vec (a vector of samples with finite size) 
and it is scheduled with a timestamp (event) in the infinite 
length stream of such events (ivec). With this sort of ab-
straction, Chronic can provide the direct access to low-
level sample data, which does not normally exist in unit-

and discovering structure of algorithm, or discovering the basis of classi-
fication as the examples of exploratory understanding [13] 
4 “A type constructor builds complex types from simpler ones. For ex-
ample, C has the “pointer to…” type constructor and we can write this as 
“α pointer,” where α is a free type variable which might be. for exam-
ple, int” [12, p.7] 



generator languages; this feature is beneficial for peform-
ing various microsound synthesis techniques just within 
the language, without the help of ‘native’ modules written 
in C++. 

However, Bencina’s software framework is mainly de-
signed for stand-alone synthesizer software and Brandt’s 
Chronic language is a non-real-time computer music lan-
guage and significant reconsideration is required to be 
adopted for real-time sound synthesis, because of its 
acausal behavior [12, p.77]. 

2.3 The Microsound Synthesis Framework in LC 

In contrast, our LC language is designed with the sound 
synthesis framework deemed appropriate for real-time 
sound synthesis. Sharing the same interest with Bencina’s 
granular synthesis framework and Brandt’s Chronic lan-
guage for investigating in alternative software design be-
sides the traditional unit-generator concept, the mi-
crosound synthesis framework in the LC computer music 
language was designed with objects and library functions 
that can directly represent microsounds and related manip-
ulations for microsound synthesis.  

 
Figure 1. Samples and SampleBuffer objects in LC. 

 
Figure 2. Example of indexed access in LC. 

In the microsound synthesis framework, two objects, Sam-
ples and SampleBuffer directly represent microsounds. 
While the former is immutable and the latter is mutable, 
the methods to convert between these two objects are pro-
vided. The Samples object is mainly used to manipulate 

                                                
5 Synchronous granular synthesis is a kind of granular synthesis, in which 
“sounds results from one or more streams of grains” (i.e. stream(s) of 

and schedule microsounds. Figure 1 shows various meth-
ods to create Samples objects and Figure 2 displays the ex-
amples of index access to the Samples and SampleBuffer 
objects. 

In LC’s microsound synthesis framework, microsound 
synthesis is performed with these microsound objects to-
gether with various methods and library functions. Figure 
3 and Figure 4 depict examples of microsound synthesis in 
LC, just as described in [3] and [4].  

 
Figure 3. Example of synchronous granular synthesis 

in LC [3, p.132]. 

 
Figure 4. Example of granular synthesis with 

 pregenerated grains [4]. 

Figure 3 is an example of simple synchronous granular 
synthesis 5  in LC. As shown, the Samples and Sam-
pleBuffer objects are used to represent microsounds, and 
manipulations can be directly applied to these objects 
(lines 12-13) by method calls (see [3, p.132] for more de-
tails of the code). Note that as the Samples object is immu-
table, it can be reused and rescheduled even when the same 
object may overlap at a certain point in time (line 17-20), 
without any extra care. Generally speaking, the sound ob-
ject in unit-generator languages (such as instrument in 

microsounds). “Within each stream, one grain follows another, with a de-
lay period between the grains. Synchronous means that the grains follow 
each other at regular intervals” [1, p.93]. 

01 //create a new Sample object from the buf no. 0. 
02 LoadSndFile(0 “/sound1.aif”); 
03 var snd = ReadBuf(0, 256::samp); 
04  
05 //create another by generating a window. 
06 var win = GenWindow(512::samp, \hanning); 
07 
08 //create Samples objects by the method calls. 
09 var grain    = snd->applyEnv(win); 
10 var halfAmp  = snd->amplify (0.5); 
11 var octup    = snd->resample(snd.size / 2); 
12 var reversed = snd->reverse(); 
13 
14 //convert a Samples obj to a SampleBuffer obj. 
15 var sbuf = snd->toSampleBuffer(); 
16 //convert it back to a Samples obj. 
17 var snd2 = sbuf->toSamples(); 
18 
19 //create a new SampleBuffer by the ‘new’ operator. 
20 var sbuf2 = new SampleBuffer(128); 

01 //indexed-access to a SampleBuffer object. 
02 var sb = new SampleBuffer(256); 
03 for (var i = 0; i < sb.size; i+=1){ 
04   sb[i] = i * 2 
05 } 
06  
07 //indexed-access to a Samples object. 
08 //Samples is read-only (immutable) 
09 var snd = sb->toSamples(); 
19 for (var i = 0; i < snd.size; i +=1){ 
11   println(“snd[“ .. i .. “]=” .. snd[i]); 
12 } 
 

01 //create a SampleBuffer and fill it with 256 samp 
02 //sine wave * 4 cycles. 
03 var PI = 3.14159265359; 
03 var sbuf = new SampleBuffer(1024); 
04 for (var i = 0; i < sbus.size; i+=1){ 
05   sbuf[i] = Sin(PI * 2 * (i * 4.0 / sbuf.size); 
06 } 
07 
08 //create a grain, apply an envelope, resample it. 
09 var tmp = subf->toSamples(); 
10 var win = GetWindow(1024:samp, \hanning); 
11  
12 var grain = tmp->applyEnv(win)->resample(440); 
13 grain = grain->amplify(0.25); 
14  
15 //perform granular synthesis for 5 sec. 
16 within(5::second) { 
17   while(true){ 
18     WriteDAC(grain); 
19     now += grain.dur / 4; 
20   } 
21 } 

01 //create an array to store pregenerated grains 
02 var grains = new Array(100); 
03   
03 //generate grains with 400-500 Hz sine waves 
04 var win = GetWindow(512::samp, \hanning); 
05 for (var i = 0; i < grains.size; i += 1){ 
06   //use a unit-gen object to create a Samples obj. 
07   var src = new Sin~(i + 400); 
08   var tmp = src->pread(win.dur); 
09   var grn = tmp->applyEnv(win); 
10   grains[i] = grn; 
11 } 
12 
13 //perform granular synthesis for 5 sec. 
14 within(5::second) { 
15   while(true){ 
16     var idx = Rand(0, grains.size – 1); 
16     PanOut(grains[idx]); 
19     now += grains[idx].dur / Rand(0.5, 2); 
20   } 
21 } 



Csound and synth in SuperCollider [14]) cannot realize 
such self-overlapping, because each unit-generator must 
maintain its own internal current status that changes as 
sound synthesis is performed. 

In contrast to synchronous granular synthesis, asynchro-
nous granular synthesis “scatters the grains over a speci-
fied duration within regions inscribed on the time-fre-
quency plane” [1, p.96]. Figure 4 is an example of asyn-
chronous granular synthesis with the grains made from the 
sine wave of frequency between 400-500 Hz and irregular 
intervals. In this example, since the grains are pre-gener-
ated beforehand and only scheduling is performed in actual 
sound synthesis, significantly enhanced performance effi-
ciency can be achieved. Such abstraction of the mi-
crosound synthesis framework in LC permits describing 
various microsound synthesis techniques more tersely and 
simpler versus existing unit-generator languages (see [3] 
and [4] for more details). 

2.4 Lazy Evaluation and Digital Sound Synthesis 

2.4.1 Lazy Evaluation 

Lazy evaluation is a method to evaluate programs, often 
seen in functional programing languages. The list of the 
languages that have lazy evaluation in the language speci-
fication includes Haskell [15], OCaml [16], Scala [17], and 
others. In a lazy language, a program “will not evaluate 
any expression unless its value is demanded by some other 
part of computation”, whereas, in a strict language, a pro-
gram “evaluate[s] each expression as the control flow of 
the program reaches it6” [18, p.322].  

While there are not many examples, certain computer mu-
sic languages adopt lazy evaluation for sound synthesis. 
The following sections describe such languages. 

2.4.2 The Fugue Computer Music Language 

Fugue [19], a computer music language developed by 
Dannenberg et al. as an internal domain-specific language 
built on XLISP [20], is an early example of computer mu-
sic language applying lazy evaluation in sound synthesis.  

 
Figure 5. A simple example of sound synthesis  

in the Fugue language [19]. 

Figure 5 portrays a simple example code in the Fugue lan-
guage, as described by Dannenberg et al. in [19]. First, the 
variable Mysound is bound to a sound stored in the file 
“mysound” (line 01). Line 02 creates a score consisting 
two copies of Mysound scaled by 2.0 and sets it to the var-
iable Demo. However, Fugue does not evaluate this score 

                                                
6 This evaluation strategy of strict languages is also often referred to as 
eager evaluation. 

at this point and no computation is performed. In line 03, 
the play function call forces the evaluation to produce the 
sample output. When this computation is performed, the 
computed samples are memorized in Demo. 

Nevertheless, unlike many other lazy languages, Fugue 
does not memoize the result of intermediate computations 
by default [21]; lazy evaluation is employed rather as a 
technique to eliminate unnecessary memory allocation and 
signal copying to form intermediate results for the im-
provement of the performance efficiency [21]. Fugue was 
significantly extended later and renamed Nyquist. Nyquist 
also performs lazy evaluation, yet approaches sound syn-
thesis incrementally by block processing so that it can re-
duce the required memory space [22], while Fugue allo-
cates the enough memory space for the entire result and 
computes one-at-a-time. The intermediate computed re-
sults are not memoized by default also in Nyquist [21]. 

2.4.3 The Chronic Computer Music Language 

Chronic developed by Brandt [12], which is an internal do-
main-specific language (DSL) built on OCaml for non-
real-time sound processing, is another noteworthy exam-
ple of a computer music language that adopted lazy evalu-
ation for sound synthesis. As already described in Section 
2.2 Software Framework for Microsound Synthesis, 
Chronic has the type ‘ivec’, which is a vector of infinite 
size. Unlike strict languages, lazy languages can handle 
vectors of infinite size without any difficulty, as any value 
in the vector is not evaluated until it is actually required. 

As seen in the example of granular sound synthesis (“Sam-
ple vec event ivec”), Chronic utilizes this feature to express 
an audio stream of infinite length, without modeling it as a 
data-streaming object (like unit-generators). Such a frame-
work design fosters removal of the abstraction barrier7 to 
low-level sample data, by avoiding the encapsulation of it 
and allowing direct access, even when handling the 
streaming of audio and event data. 

3. DESCRIPTION OF OUR WORK 

3.1 Temporal Suspension of Sound Synthesis 

As described in Section 2.3: The Microsound Synthesis in 
LC, the LC language provides microsound objects and re-
lated manipulations for microsound synthesis. This soft-
ware design assumes that microsound synthesis techniques 
deal with fairly short sound particles and scheduling algo-
rithms are performed sporadically.  

Yet, while this assumption is practically justifiable in per-
forming microsound synthesis techniques, when manipu-
lating a very large Samples object beyond microsound 
time-scale, real-time sound synthesis can be temporarily 
suspended, because the computation is performed eagerly 

7 Abstraction barriers “isolate different ‘levels’ of the system.” “At each 
level, the barrier separates the programs … that use the data abstraction 
from the programs … that implement the data abstraction” [24, p.88] 

01 (setf Mysound (sfload “mysound”) 
02 (setf Demo (scale 2.0 (seq (cue Mysound) 
03                            (cue Mysound)))) 
04 (play Demo) 



in the current version. It can consume too much time to 
manipulate very large Samples objects, and may fail to 
meet the real-time deadline for sound synthesis.   

For example, if each DSP cycle requires 256 frames of 
samples for the audio output under the 44.1 kHz sample 
rate, this samples corresponds to about 5.8 msec. Yet, if a 
large Samples object, like one consisting of 4,410,000 (= 
100 sec/44.1kHz) samples, is manipulated during one DSP 
cycle, it easily consumes more than 5.8 msec. This can sus-
pend the real-time sound synthesis for a while; while this 
type of situation is beyond what the microsound synthesis 
framework in LC assumes, it is still desirable to avoid such 
temporal suspension. Figure 6 shows a simple example 
that would bring about such temporal suspension  in LC.  

Figure 6. Example to temporarily suspend the DSP. 

3.2 Lazily Manipulating Microsound Objects 

We adopted lazy evaluation to solve this problem of tem-
poral suspension. As the evaluation of a microsound object 
is delayed until it is actually required (e.g., for the audio 
output or for the access to the samples within the mi-
crosound object) and only the required part of the mi-
crosound object is computed, leaving the rest of samples	
uncomputed, the pause time imposed during evaluation 
can be significantly reduced. 

We implemented a simple software framework in C++ 
from scratch to evaluate how effective this technique can 
be in practice; as it is clearly more desirable to avoid the 
influence from any other factors (such as memory alloca-
tion and garbage collection) when measuring the perfor-
mance efficiency, we opt to not directly integrate this tech-
nique into an existing language. 

Figure 7 shows the excerpt of the definition of the abstract 
class for microsound objects. As is present in line 06, each 
samples within the Microsound instance can be accessed 
by the overloaded operator ‘[]’. To exclude the influence 
of memory allocation, which can consume a significant 
amount of the CPU time from the measurement of the per-
formance efficiency, in this testing framework, all the 
memory was allocated with the constructor method8, and 
the init method performs any other initialization required 
for sound synthesis. The init method also calls the _init 
method of the subclass. 

                                                
8 Based on the fact that the CPU time used for memory allocation is often 
less predictable and can consume significant amounts of time, real-time 
computer music software needs to take extra care, as discussed by Dan-
nenberg and Bencina [24].  

Figure 7. The base class for all the microsound classes.  

Figure 8. Excerpt of the sinewave microsound 
 class implementation (the eager-evaluation). 

 
 Figure 9. Excerpt of the sinewave miscrosound 

 class implementation (the lazy-evaluation). 

Figure 8 and Figure 9 present the excerpts from the imple-
mentation of the sinewave microsound class. Each figure 
shows the versions that perform eager evaluation and lazy 
evaluation, respectively.  In Figure 8, before the instance 
is created9, the _init method is called  to fill the buffer to 
with the waveform of the sine wave at once. The computed 
samples can be accessed by the ‘[]’ operator.  

On the contrary, in Figure 9, the _init method of the lazy 
evaluation version only sets up the phase increment param-
eter, and does not compute any samples. Yet, when the in-
dexed access is performed, it verifies whether the sample 

9 To exclude the CPU time for the memory allocation from the perfor-
mance evaluation, the required memory space was allocated before real-
time sound synthesis began. The other components performing signal 
processing were executed during real-time synthesis. 

01 MSLazySineWave::_init(void) 
02 { 
03   this->pahseInc = 2.0 * PI * freq / gSampleRate; 
04 } 
06 lc_sample MSLazySineWave::operator[](int64_t idx) 
07 { 
08   int64_t bitmapIndex = index / MSBLOCK_SIZE; 
09   if (this->computedBlocks[bitmapIndex]){ 
10     return this->samples[idx]; 
11   } 
12  
13   int64_t start = bitmapIndex * MS_BLOCK_SIZE; 
14   int64_t end   = start + MS_BLOCK_SIZE; 
15   if (end >= this>samples.size()){ 
16     end = this->samples.zie(); 
17   } 
18    
19   double phz = fmod(phaseInc * start, 2.0 * PI); 
20   for (int64_t i = start; i < end; i++){ 
21     this->samples[i] = (lc_sample)(sin(phz)* amp); 
22     phz += phaseInc; 
23   } 
24   this->computedBlocks[bitmapindex] = true; 
25   return this->samples[idx]; 
26 } 

01 //read three second from the buffer No.0. 
02 var snd = ReadBuf(0, 1::second); 
03 //play it. 
04 WriteDAC(snd); 
05    
06 now += 0.5::second; //0.5 sec wait. 
07    
08 //resample it to 600 * 44100 samples. 
09 //this temporarily suspend real-time synthesis, 
10 //as it consumes too much CPU time. 
11 var tmp = snd->resample(600 * 44100); 
 

01 //the sinewave class (The eager-evaluation) 
02 //called when the instance is initialized. 
03 void MSEagerSineWave::_init(void) 
04 { 
05   double phase = 0.0; 
06   double phaseInc = 2.0 * PI * freq / gSampleRate; 
07    
08   int64_t size = this->size(); 
09   for (int64_t i = 0; i < size; i++){ 
10     this->buf[i] = sin(phase) * amp; 
11     phase += phaseInc; 
12    if (phase > 2.0 * PI || phase < -2.0 * PI){ 
13        phase = fmod(phase, 2.0 * PI); 
14     } 
15   } 
16   return; 
17 } 
 

01 class Microsound { 
02 public: 
03   Microsound(void); 
04   virtual ~Microsound(void); 
05   virtual int64_t   size(void) = 0; 
06   virtual lc_sample operator[](int64_t index) = 0; 
07   virtual void      init(void) final; 
08 }; 



value at the index is previously evaluated. If already eval-
uated, the method simply returned the memoized value. If 
not, it computes the sample value and return.  

Note that one block of samples is computed altogether by 
block processing to improve performance efficiency. The 
internal buffers within the microsound objects are divided 
into a number of the blocks with fixed size, and each block 
is computed at once, when any access to a sample value 
within the block is made. The flag if the block is already 
computed or not is maintained in the separate bitmap (as 
observed in lines 08-11 of Figure 9). Since the std::vec-
tor<bool> uses only one byte for eight elements of the 
boolean type, each byte can manage the statuses of eight 
blocks.  

While lazy evaluation can distribute the cost of the com-
putation among the DSP cycles by computing on demand, 
such block processing also contributes to increasing com-
putational efficiency when the computation is demanded; 
thus, the pause time in the creation of microsound objects 
can be significantly reduced.  

 
Figure 10. A simple FM synthesis instrument 

 
Figure 11. Performing FM synthesis  

with microsound objects. 
MSEagerSig and MSLazySig: 
 is a microsound object with the constant values. 
MSEagerWhiteNoise and MSLazyWhiteNoise: 
 is a microsound object filled with white noise. 

MSEagerSineWave and MSLazySineWave: 
 is a microsound object filled with a sine wave. The frequency 
and amplitude parameters are specified by floating point val-
ues. 
MSEagerSineWave2 and MSLazySineWave2:  
is a microsound object filled with a sine wave.  The frequency 
and amplitude parameters are given by other microsound ob-
jects. 
MSEagerArithmetic and MSLazyAritmetic:  
creates a new microsound objects. By performing an arithme-
tic operation (+,-,*,/) to two input microsound objects and  

SUEnvelope:  
creates a new microsound with the given envelope parame-
ters. 

Table 1. The list of the available unit-generators 

Table 1 lists the microsound objects prepared for the as-
sessment of the performance efficiency. While there are 
few objects, these are enough to perform basic tasks, such 
as additive synthesis and FM synthesis. For instance, a 
simple FM synthesis (as portrayed in Figure 10) can be 
carried out by combining these objects as seen in Figure 
11. 

4. PERFORMANCE MEASUREMENT  

4.1 The Test Environment 

As described in the previous section, the testing software 
framework was written exclusively in C++ from scratch, 
independently of any existing computer music software, 
so that we could exclude other factors regarding the lan-
guage implementation as possible. We used the clock li-
brary function so that the exact CPU time spent for the 
sound synthesis would be measured without the influence 
of task-switching.  

All the tests were performed on a Mac Book Air 2015 (11-
inch, Intel Core i5 1.6GHz, 4GB Memory, OS X El Capi-
tan). The code was compiled with the ‘-Ofast’ option (the 
fastest aggressive optimization) with the Apple LLVM7.1 
compiler. The I/O block size for the sound output was set 
to 256 samples, and the sample rate was set to 44.1kHz. 
The block size for the lazy evaluation version of mi-
crosound objects was set to 256 samples. 

4.2 The Test Tasks 

Table 2 outlines the test tasks for the evaluation. Each task 
was performed five times for both eager evaluation and 
lazy evaluation to measure the worst-case CPU time, the 
best-case CPU time, and the average CPU time. Each task 
generated the sounds of 10 sec, 30 sec, and 120 sec. 

Task #1: White Noise with Ring Modulation 
 A white noise sound is scaled by a sine wave sound.  
Task #2: Additive Synthesis 
 Additive synthesis consisting of four sine wave sounds 

and one envelope applied to the entire sound. 
Task #3: FM Synthesis 
 A simple FM synthesis sound as described in Figure 10. 

Table 2. The test tasks for the performance measurement. 

4.3 The Test Results 

Table 3 details the results of the test tasks. All the results 
in the table are in milliseconds. The numbers in the ‘at the 
initialization’ section refer to the worst-case CPU time 
(max), the best-case CPU time (min), and the average CPU 
time in the DSP cycle when the microsound objects are in-
itialized.  

The numbers in the ‘rest’ section are the CPU times spent 
in the rest of the DSP cycles until the end of the sound. The 
total CPU time is the entirety of the CPU time spent fin-
ishing the evaluation of the microsound objects (the aver-
age of the five trials for each task). 

 

 

01 //building a FM synth sound (carrier freq = 1000, 
02 //modulator freq = 6, modulation depth = 15) 
03 int64_t size = GetSampleRate() * 5; 
04 mod   = new MSLazySineWave  (size, 6, 15); 
05 cfreq = new MSLazySig       (size, 1000); 
06  
07 //add the carrier freq and the modulater output. 
08 freq  = new MSLazyArithmetic('+', mod, cfreq); 
09  
10 //generating the final output samples. 
11 amp   = new MSLazySig       (size, 1.0); 
12 out   = new MSLazySineWave2 (freq, amp); 
 



 
 

At the initialization The rest Total  
CPU time 

(ms) 
avg 
(ms) 

max 
(ms) 

min 
(ms) 

avg 
(ms) 

max 
(ms) 

min 
(ms) 

The Fastest-Aggressive Optimization (-Ofast) 
Task 1: White Noise With Ring Modulation 
10 sec 
Eager 21.334 25.090 17.494 0.008 0.029 0.001 34.762 
Lazy 0.088 0.092 0.081 0.029 0.105 0.012 50.518 
30 sec 
Eager 63.685 72.217 55.735 0.009 0.115 0.002 112.537 
Lazy 0.053 0.062 0.046 0.032 0.158 0.011 164.912 
120 sec 
Eager 208.183 224.036 196.261 0.007 0.053 0.001 350.470 
Lazy 0.077 0.092 0.055 0.038 0.192 0.010 794.457 
Task 2: Additive Synthesis 
10 sec 
Eager 61.828 80.981 53.277 0.008 0.030 0.002 75.798 
Lazy 0.089 0.107 0.052 0.083 0.489 0.033 142.842 
30 sec 
Eager 201.302 220.587 179.687 0.008 0.053 0.001 241.545 
Lazy 0.095 0.137 0.058 0.083 0.502 0.032 427.433 
120 sec 
Eager 803.788 881.327 679.922 0.014 0.164 0.002 1092.172 
Lazy 0.122 0.154 0.089 0.095 0.543 0.032 1954.035 
Task 3: FM Synthesis 
10 sec 
Eager 27.320 33.822 24.116 0.008 0.143 0.002 41.423 
Lazy 0.070 0.094 0.048 0.033 0.116 0.014 57.505 
30 sec 
Eager 84.239 106.615 67.021 0.008 0.050 0.001 124.650 
Lazy 0.070 0.095 0.050 0.034 0.161 0.014 173.607 
120 sec 
Eager 352.669 406.257 288.634 0.013 0.284 0.002 621.765 
Lazy 0.106 0.124 0.076 0.040 0.377 0.012 817.449 

Table 3. The Test Results 

5. DISCUSSION 

5.1 The Evaluation of the Test Results 

Overall, the test results indicated what was theoretically 
expected. In the eager evaluation version, as the sizes of 
the microsound objects became larger, the time costs as-
sociated with the evaluation at the initialization increased 
almost proportionally. For example, the average CPU 
time per DSP cycle (avg) observed for the FM synthesis 
task by eager evaluation was 27.320 msec for the 10 sec 
sound, 84.239 msec for the 30 sec sound, and 352.69 sec 
for the 120 second. The time cost after the initialization 
stayed constant regardless of the duration of the sound, 
because it only retrieved the sample data already com-
puted at the timing of the initialization. As shown in Ta-
ble 3, it ranged from 0.08 msec to 0.014 msec. 
 
In contrast, lazy evaluation significantly diminished the 
pause time imposed by the manipulation of microsound 
objects, even when the sizes of the microsound objects 
were far beyond the microsound time-scale as in these 
test tasks. The CPU cost in each DSP cycle remained 
mostly constant regardless of the size of the microsound 
object. For example, the CPU time spent at the initializa-
tion ranged between 0.053 msec and 0.122 msec, and the 
average CPU time for the rest stays almost constant for 
each task (0.029 – 0.33 msec for task 1, 0.083-0.095 
msec for task 2, and 0.033 – 0.040 msec for task 3). 
While it was observed that the total CPU time costs were 
equal to roughly 1.5-2 times as much as the eager evalua-
tion version, the significant reduction of the pause time 

                                                
10 If garbage collection utilizes reference counting [25] (or combine it 
with another garbage collection mechanism), such memory space can be 

achieved by lazy evaluation is quite favorable for com-
puter music applications. To meet the real-time deadline 
is the most important criterion for real-time sound synthe-
sis. 
 
Thus, the adoption of lazy evaluation in our technique 
significantly reduced the pause time and therefore the 
temporal suspension, as described in [3] and [4], can be 
avoided. While our original microsound synthesis frame-
work in the LC language assumed only the use for mi-
crosound synthesis techniques, our lazy evaluation tech-
nique can aid in enlarging the potential application do-
main of his microsound synthesis framework, towards 
more general sound synthesis techniques. 

5.2 The Difference from Existing Works 

As discussed in the Related Work section, there are not 
many examples of the previous literature utilizing lazy 
evaluation for digital sound synthesis, and these existing 
works significantly differ from that which we presented 
here. Both Fugue and Chronic perform non-real-time 
sound synthesis. Fugue (and Nyquist) adopts lazy evalua-
tion to reduce memory allocation to improve the overall 
performance efficiency and Chronic employs lazy evalua-
tion to express a data stream as an infinite-length vector; 
in contrast, our work adopts lazy evaluation to reduce the 
pause time in real-time sound synthesis, by distributing the 
computational cost among the DSP cycles.  

5.3 The Memory Usages 

Memory usage is one of the issues needing to be discussed 
regarding our technique. Indeed, this is one of the reasons 
Nyquist utilizes block processing and does not memoize 
the intermediate results, as the available physical memory 
space was not as large as is common place today and the 
allocation of large memory can lead to frequent paging 
to/from the external storage, significantly damaging the 
performance efficiency. However, computer systems have 
much larger physical memory space nowadays, and the au-
dio data is not overly large for fitting in the physical 
memory space in most situations. Moreover, while our cur-
rent implementation holds intermediate results, if the com-
puter music language has the garbage collection feature, 
the intermediate results unreachable from the program can 
be automatically released10. 

5.4 The Extended Discussion 

One of the possible extension for this technique is to greed-
ily evaluate the samples before they are actually needed. 
The samples can be computed in other threads in parallel 
with the audio thread. Generally speaking, when perform-
ing real-time sound synthesis, the audio thread periodically 
computes the audio output with a certain interval so that it 
can coordinate its computation with the progress of real 

released immediately when it becomes unreachable. This would make the 
reuse of the memory space allocated for microsound objects faster. 



time. Such temporal behavior is important to realize inter-
active control in a computer music system. 

However, while the sound synthesis is performed during 
this periodic computation in the audio thread in the current 
test environment, it is also possible to evaluate the sample 
values left uncomputed within microsound objects in 
background threads in parallel. This would not cause much 
damage to the temporal behavior of the audio thread, since 
it is not necessary to synchronize these threads for the au-
dio computation, if microsound objects are immutable (as 
in LC’s Samples object). Even when the audio thread and 
background threads compute the same block of samples 
and evaluate the samples data simultaneously, the com-
puted results are identical because of immutability; hence, 
the evaluation can be performed in parallel without any 
problem and significant improvement of the computational 
efficiency can be expected with multithreading. 

6. CONCLUSIONS AND FUTURE WORK 
In the present work, we proposed a solution to the problem 
of temporary suspension of real-time sound synthesis as 
seen in the microsound synthesis framework in the LC lan-
guage. By adopting lazy evaluation to manipulations of 
microsound objects, the pause time imposed by the manip-
ulations of microsounds can be significantly diminished 
and, thus, temporary suspension can be avoided. Such a 
feature is quite favorable for utilizing the software abstrac-
tion of the microsound synthesis framework in more gen-
eral applications beyond microsound synthesis. When 
combined with the reusability of previously computed 
samples (e.g., reusing the pre-generated microsounds), a 
significant improvement can be expected in the perfor-
mance efficiency in real-time sound synthesis, which ex-
isting unit-generator languages can hardly emulate.  

For the future research, we are planning to extend the tech-
nique, as alluded to earlier, to evaluate samples that are 
still not yet computed, greedily in multithreads, for further 
improvement in the performance efficiency. 
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