
LAZY EVALUATION IN MICROSOUND SYNTHESIS

Hiroki Nishino Adrian David Cheok
Imagineering Institute, Malaysia ＆

Chang Gung University, Taiwan
hiroki.nishino@acm.org

 Imagineering Institute, Malaysia ＆
City University London, United Kingdom

adrian@imagineeringinstitute.org

ABSTRACT
The microsound synthesis framework in the LC computer
music programing language integrates objects and library
functions that can directly represent microsounds and re-
lated manipulations for microsound synthesis. Together
with the mechanism that enables seamless collaboration
with the unit-generator-based sound synthesis framework,
such abstraction can help provide a simpler and terser pro-
graming model for various microsound synthesis tech-
niques.

However, while the microsound synthesis framework can
achieve practical real-time sound synthesis performance in
general, it was observed that temporal suspension in sound
synthesis can occur, when a very large microsound object
beyond microsound time-scale is manipulated, missing the
deadline for real-time sound synthesis.

In this paper, we describe our solution to this problem. By
lazily evaluating microsound objects, computation is de-
layed until when the samples are actually needed (e.g., for
the DAC output), and, when performing the computation,
only the amount of samples required at the point is com-
puted; thus, temporal suspension in real-time sound syn-
thesis can be avoided by distributing the computational
cost among the DSP cycles. Such a solution is beneficial
to extend the application domains of the sound synthesis
framework design beyond microsound synthesis towards
more general sound synthesis techniques.

1. INTRODUCTION
Today, microsound synthesis techniques [1] already con-
stitute an important part of digital sound synthesis tech-
niques for musical creation, being used for both non-real-
time and real-time sound synthesis. Unlike many other
sound synthesis techniques that conceptualize sounds as
functions of time, microsound synthesis conceptualizes the
sound as a composition of many short sound particles that
overlap-add onto each other. Such a significant conceptual
difference led to the question if the traditional unit-gener-
ator concept [2, p.89], which describes a sound synthesis
algorithm by software modules that stream sample data to

each other, is still appropriate also for microsound synthe-
sis. While there have not been many examples, some pre-
vious works investigate more suitable software abstrac-
tions for microsound synthesis for this reason.

The LC computer music programming language [3] that
we developed is one of the most recent examples of this
kind, which takes microsound synthesis techniques into
account in the software abstraction. The microsound syn-
thesis framework in the LC language [4] significantly dif-
fers from existing unit-generator-based synthesis frame-
works and integrates objects and library functions that can
directly represent microsounds and related manipulations
in microsound synthesis. Such abstraction contributes to
describing various microsound synthesis techniques much
simpler and terser in comparison with many existing unit-
generator languages and can realize microsound synthesis
in real-time.

Yet, as we previously described in [4], temporal suspen-
sion of real-time sound synthesis can be observed in cer-
tain situations; as LC’s microsound objects are arrays of
sample values (with useful methods) in nature, when ma-
nipulating a microsound object of a very large size, far be-
yond the microsound time-scale, the deadline for the real-
time sound synthesis can be missed, causing temporal sus-
pension of the audio output audible to human ears. We also
described that this issue has normally not been observed in
most practical situations when the sizes of microsound ob-
jects stay reasonably within the microsound time-scale and
microsounds are manipulated sporadically as assumed by
the sound synthesis framework. Yet, it is still desirable to
avoid such temporal suspensions by large microsound ob-
jects to extend the application domain to more general ap-
plications beyond microsound synthesis.

In this paper, we propose a solution to this problem by
adopting lazy evaluation to the microsound synthesis
framework. Instead of eagerly evaluating the results of ma-
nipulations right when they are performed, the evaluation
is delayed until when the result is actually required. Also,
the evaluation takes place only for the number of samples
required at that point, rather than for the entire microsound
object; thus, by the adoption of lazy evaluation to the ma-
nipulation of microsound objects, the pause time can be
significantly reduced and temporal suspension can be
avoided in most practical situations, even when manipulat-
ing large microsound objects.

Copyright: © 2016 First author et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and repro-
duction in any medium, provided the original author and source are
credited.

To assess the actual performance efficiency without being
influenced by other factors in the language implementation
(e.g., memory allocation, garbage-collection, or task-
switching), we implemented a testing software framework
and measured the performance efficiency in C++. The re-
sults showed a significant reduction of pause time, just as
expected.

Such adoption of lazy evaluation to microsound objects,
not only solves the issue of the temporal suspensions in
most practical situations, but can also contribute to making
the microsound synthesis framework more stable at
runtime, by distributing the computational cost beyond one
DSP cycle; this is quite favorable towards more general
applications of the sound synthesis framework design,
certainly beyond microsound synthesis.

2. RELATED WORK

2.1 Microsound Synthesis

Microsound synthesis was first brought to the practice of
computer music around the early 1970s1. Since then, vari-
ous sound synthesis techniques of the kind have been de-
veloped. This includes granular synthesis [5], formant
wave-function (FOF) (from function d’onde formantique)
[6], FOF synthesis [7], and waveset synthesis [8], all these
belonging the family of microsound synthesis.

While many other synthesis techniques that conceptualize
a sound as a function of time (such as additive synthesis,
subtractive synthesis and FM synthesis), microsound syn-
thesis conceptualizes sound quite differently. Generally
speaking, in microsound synthesis, the entire sound output
is composed of many short sound particles (i.e., mi-
crosounds) that overlap-add onto each other. The duration
of such short sound particles extends from “the thread of
timbre perception (several hundred micro seconds) up to
the duration of a short sound object (~100 msec)” to “the
boundary between the audio frequency range (approxi-
mately 20 Hz to 20 kHz) and the infrasonic frequency
range (below 20 Hz)” [1, p.21].

In fact, Gabor, whose theory had a significant influence on
the origins of microsound synthesis, already contrasted his
theory to “the orthodox method of analysis … [which]
starts with the assumption that the signal is a function (t)
of time t” [9].

2.2 Software Frameworks for Microsound Synthesis

Such a theoretical difference as described earlier led to the
question of whether the traditional unit-generator concept
is appropriate for microsound synthesis2.

1 For instance, one of the earliest examples of microsound synthesis was
the implementation of ascynronous granular synthesis in MUSIC-V by
Curtis Roads in 1974. Roads [1, p.110].
2 If interested, see [2] for the detailed discussion by Nishino et al.
3 Blackwell and Green list such activities as sketching; design of typog-
raphy, software, etc.; other cases where the final product cannot be envis-
aged and has to be ‘discovered’ as the examples of exploratory design

Typically, in unit-generator languages, microsound syn-
thesis techniques are normally realized by unit-generators,
which encapsulate microsound synthesis techniques
within, or by implementing microsounds as note-level
sound objects and scheduling them with the user program.

Yet, some computer music researchers discuss that such
implementations may not be appropriate for microsound
synthesis. In [10], Brandt argues that “Music-N languages
like Csound [11],” which are typical unit-generator lan-
guages, “are too limited” and not appropriate for FOF syn-
thesis, since “the stream [of grains in FOF synthesis] is ir-
regularly timed, and a grain is a sequence of samples”.
Brandt also puts forth that the unit-generator concept is a
“black-box primitive” in computer music language in na-
ture and is problematic as “if a desired operation is not pre-
sent, and cannot be represented as a composition of primi-
tives, it cannot be realized within the language” [12, pp.4-
5].

In [4], we too maintained that the unit-generator concept
may not be truly beneficial for end-users even when note-
level objects and scheduling algorithms are utilized for the
implementation of a certain microsound synthesis tech-
nique and provided as a library function, especially when
considering creative explorations by users. Even though
the complicated implementation is hidden inside the li-
brary function, if the user needs to alter the sound synthesis
algorithm beyond what is provided by the function, the
user has to modify the hidden implementation within the
library function; such a situation is clearly not desirable to
support the activities of exploratory understanding and ex-
ploratory design3.

Based on such considerations, researchers and developers
have been investigating alternative software abstractions
that are suitable for microsound synthesis. For example,
Bencina’s object-oriented software framework design for
a granular synthesizer includes the objects that directly
represent grains (microsounds). Brandt’s Chronic lan-
guage is another example [12]. Chronic is a computer mu-
sic language built upon the OCaml language [13]. Brandt
proposed the ‘temporary type constructor’ concept, which
introduces “a relation to a one-dimension axis, which we
call time” to type constructors4. In doing so, for example,
the audio stream of granular synthesis can be defined by
the type of “Sample vec event ivec.”; each grain is repre-
sented by Sample vec (a vector of samples with finite size)
and it is scheduled with a timestamp (event) in the infinite
length stream of such events (ivec). With this sort of ab-
straction, Chronic can provide the direct access to low-
level sample data, which does not normally exist in unit-

and discovering structure of algorithm, or discovering the basis of classi-
fication as the examples of exploratory understanding [13]
4 “A type constructor builds complex types from simpler ones. For ex-
ample, C has the “pointer to…” type constructor and we can write this as
“α pointer,” where α is a free type variable which might be. for exam-
ple, int” [12, p.7]

generator languages; this feature is beneficial for peform-
ing various microsound synthesis techniques just within
the language, without the help of ‘native’ modules written
in C++.

However, Bencina’s software framework is mainly de-
signed for stand-alone synthesizer software and Brandt’s
Chronic language is a non-real-time computer music lan-
guage and significant reconsideration is required to be
adopted for real-time sound synthesis, because of its
acausal behavior [12, p.77].

2.3 The Microsound Synthesis Framework in LC

In contrast, our LC language is designed with the sound
synthesis framework deemed appropriate for real-time
sound synthesis. Sharing the same interest with Bencina’s
granular synthesis framework and Brandt’s Chronic lan-
guage for investigating in alternative software design be-
sides the traditional unit-generator concept, the mi-
crosound synthesis framework in the LC computer music
language was designed with objects and library functions
that can directly represent microsounds and related manip-
ulations for microsound synthesis.

Figure 1. Samples and SampleBuffer objects in LC.

Figure 2. Example of indexed access in LC.

In the microsound synthesis framework, two objects, Sam-
ples and SampleBuffer directly represent microsounds.
While the former is immutable and the latter is mutable,
the methods to convert between these two objects are pro-
vided. The Samples object is mainly used to manipulate

5 Synchronous granular synthesis is a kind of granular synthesis, in which
“sounds results from one or more streams of grains” (i.e. stream(s) of

and schedule microsounds. Figure 1 shows various meth-
ods to create Samples objects and Figure 2 displays the ex-
amples of index access to the Samples and SampleBuffer
objects.

In LC’s microsound synthesis framework, microsound
synthesis is performed with these microsound objects to-
gether with various methods and library functions. Figure
3 and Figure 4 depict examples of microsound synthesis in
LC, just as described in [3] and [4].

Figure 3. Example of synchronous granular synthesis

in LC [3, p.132].

Figure 4. Example of granular synthesis with

 pregenerated grains [4].

Figure 3 is an example of simple synchronous granular
synthesis 5 in LC. As shown, the Samples and Sam-
pleBuffer objects are used to represent microsounds, and
manipulations can be directly applied to these objects
(lines 12-13) by method calls (see [3, p.132] for more de-
tails of the code). Note that as the Samples object is immu-
table, it can be reused and rescheduled even when the same
object may overlap at a certain point in time (line 17-20),
without any extra care. Generally speaking, the sound ob-
ject in unit-generator languages (such as instrument in

microsounds). “Within each stream, one grain follows another, with a de-
lay period between the grains. Synchronous means that the grains follow
each other at regular intervals” [1, p.93].

01 //create a new Sample object from the buf no. 0.
02 LoadSndFile(0 “/sound1.aif”);
03 var snd = ReadBuf(0, 256::samp);
04
05 //create another by generating a window.
06 var win = GenWindow(512::samp, \hanning);
07
08 //create Samples objects by the method calls.
09 var grain = snd->applyEnv(win);
10 var halfAmp = snd->amplify (0.5);
11 var octup = snd->resample(snd.size / 2);
12 var reversed = snd->reverse();
13
14 //convert a Samples obj to a SampleBuffer obj.
15 var sbuf = snd->toSampleBuffer();
16 //convert it back to a Samples obj.
17 var snd2 = sbuf->toSamples();
18
19 //create a new SampleBuffer by the ‘new’ operator.
20 var sbuf2 = new SampleBuffer(128);

01 //indexed-access to a SampleBuffer object.
02 var sb = new SampleBuffer(256);
03 for (var i = 0; i < sb.size; i+=1){
04 sb[i] = i * 2
05 }
06
07 //indexed-access to a Samples object.
08 //Samples is read-only (immutable)
09 var snd = sb->toSamples();
19 for (var i = 0; i < snd.size; i +=1){
11 println(“snd[“ .. i .. “]=” .. snd[i]);
12 }

01 //create a SampleBuffer and fill it with 256 samp
02 //sine wave * 4 cycles.
03 var PI = 3.14159265359;
03 var sbuf = new SampleBuffer(1024);
04 for (var i = 0; i < sbus.size; i+=1){
05 sbuf[i] = Sin(PI * 2 * (i * 4.0 / sbuf.size);
06 }
07
08 //create a grain, apply an envelope, resample it.
09 var tmp = subf->toSamples();
10 var win = GetWindow(1024:samp, \hanning);
11
12 var grain = tmp->applyEnv(win)->resample(440);
13 grain = grain->amplify(0.25);
14
15 //perform granular synthesis for 5 sec.
16 within(5::second) {
17 while(true){
18 WriteDAC(grain);
19 now += grain.dur / 4;
20 }
21 }

01 //create an array to store pregenerated grains
02 var grains = new Array(100);
03
03 //generate grains with 400-500 Hz sine waves
04 var win = GetWindow(512::samp, \hanning);
05 for (var i = 0; i < grains.size; i += 1){
06 //use a unit-gen object to create a Samples obj.
07 var src = new Sin~(i + 400);
08 var tmp = src->pread(win.dur);
09 var grn = tmp->applyEnv(win);
10 grains[i] = grn;
11 }
12
13 //perform granular synthesis for 5 sec.
14 within(5::second) {
15 while(true){
16 var idx = Rand(0, grains.size – 1);
16 PanOut(grains[idx]);
19 now += grains[idx].dur / Rand(0.5, 2);
20 }
21 }

Csound and synth in SuperCollider [14]) cannot realize
such self-overlapping, because each unit-generator must
maintain its own internal current status that changes as
sound synthesis is performed.

In contrast to synchronous granular synthesis, asynchro-
nous granular synthesis “scatters the grains over a speci-
fied duration within regions inscribed on the time-fre-
quency plane” [1, p.96]. Figure 4 is an example of asyn-
chronous granular synthesis with the grains made from the
sine wave of frequency between 400-500 Hz and irregular
intervals. In this example, since the grains are pre-gener-
ated beforehand and only scheduling is performed in actual
sound synthesis, significantly enhanced performance effi-
ciency can be achieved. Such abstraction of the mi-
crosound synthesis framework in LC permits describing
various microsound synthesis techniques more tersely and
simpler versus existing unit-generator languages (see [3]
and [4] for more details).

2.4 Lazy Evaluation and Digital Sound Synthesis

2.4.1 Lazy Evaluation

Lazy evaluation is a method to evaluate programs, often
seen in functional programing languages. The list of the
languages that have lazy evaluation in the language speci-
fication includes Haskell [15], OCaml [16], Scala [17], and
others. In a lazy language, a program “will not evaluate
any expression unless its value is demanded by some other
part of computation”, whereas, in a strict language, a pro-
gram “evaluate[s] each expression as the control flow of
the program reaches it6” [18, p.322].

While there are not many examples, certain computer mu-
sic languages adopt lazy evaluation for sound synthesis.
The following sections describe such languages.

2.4.2 The Fugue Computer Music Language

Fugue [19], a computer music language developed by
Dannenberg et al. as an internal domain-specific language
built on XLISP [20], is an early example of computer mu-
sic language applying lazy evaluation in sound synthesis.

Figure 5. A simple example of sound synthesis

in the Fugue language [19].

Figure 5 portrays a simple example code in the Fugue lan-
guage, as described by Dannenberg et al. in [19]. First, the
variable Mysound is bound to a sound stored in the file
“mysound” (line 01). Line 02 creates a score consisting
two copies of Mysound scaled by 2.0 and sets it to the var-
iable Demo. However, Fugue does not evaluate this score

6 This evaluation strategy of strict languages is also often referred to as
eager evaluation.

at this point and no computation is performed. In line 03,
the play function call forces the evaluation to produce the
sample output. When this computation is performed, the
computed samples are memorized in Demo.

Nevertheless, unlike many other lazy languages, Fugue
does not memoize the result of intermediate computations
by default [21]; lazy evaluation is employed rather as a
technique to eliminate unnecessary memory allocation and
signal copying to form intermediate results for the im-
provement of the performance efficiency [21]. Fugue was
significantly extended later and renamed Nyquist. Nyquist
also performs lazy evaluation, yet approaches sound syn-
thesis incrementally by block processing so that it can re-
duce the required memory space [22], while Fugue allo-
cates the enough memory space for the entire result and
computes one-at-a-time. The intermediate computed re-
sults are not memoized by default also in Nyquist [21].

2.4.3 The Chronic Computer Music Language

Chronic developed by Brandt [12], which is an internal do-
main-specific language (DSL) built on OCaml for non-
real-time sound processing, is another noteworthy exam-
ple of a computer music language that adopted lazy evalu-
ation for sound synthesis. As already described in Section
2.2 Software Framework for Microsound Synthesis,
Chronic has the type ‘ivec’, which is a vector of infinite
size. Unlike strict languages, lazy languages can handle
vectors of infinite size without any difficulty, as any value
in the vector is not evaluated until it is actually required.

As seen in the example of granular sound synthesis (“Sam-
ple vec event ivec”), Chronic utilizes this feature to express
an audio stream of infinite length, without modeling it as a
data-streaming object (like unit-generators). Such a frame-
work design fosters removal of the abstraction barrier7 to
low-level sample data, by avoiding the encapsulation of it
and allowing direct access, even when handling the
streaming of audio and event data.

3. DESCRIPTION OF OUR WORK

3.1 Temporal Suspension of Sound Synthesis

As described in Section 2.3: The Microsound Synthesis in
LC, the LC language provides microsound objects and re-
lated manipulations for microsound synthesis. This soft-
ware design assumes that microsound synthesis techniques
deal with fairly short sound particles and scheduling algo-
rithms are performed sporadically.

Yet, while this assumption is practically justifiable in per-
forming microsound synthesis techniques, when manipu-
lating a very large Samples object beyond microsound
time-scale, real-time sound synthesis can be temporarily
suspended, because the computation is performed eagerly

7 Abstraction barriers “isolate different ‘levels’ of the system.” “At each
level, the barrier separates the programs … that use the data abstraction
from the programs … that implement the data abstraction” [24, p.88]

01 (setf Mysound (sfload “mysound”)
02 (setf Demo (scale 2.0 (seq (cue Mysound)
03 (cue Mysound))))
04 (play Demo)

in the current version. It can consume too much time to
manipulate very large Samples objects, and may fail to
meet the real-time deadline for sound synthesis.

For example, if each DSP cycle requires 256 frames of
samples for the audio output under the 44.1 kHz sample
rate, this samples corresponds to about 5.8 msec. Yet, if a
large Samples object, like one consisting of 4,410,000 (=
100 sec/44.1kHz) samples, is manipulated during one DSP
cycle, it easily consumes more than 5.8 msec. This can sus-
pend the real-time sound synthesis for a while; while this
type of situation is beyond what the microsound synthesis
framework in LC assumes, it is still desirable to avoid such
temporal suspension. Figure 6 shows a simple example
that would bring about such temporal suspension in LC.

Figure 6. Example to temporarily suspend the DSP.

3.2 Lazily Manipulating Microsound Objects

We adopted lazy evaluation to solve this problem of tem-
poral suspension. As the evaluation of a microsound object
is delayed until it is actually required (e.g., for the audio
output or for the access to the samples within the mi-
crosound object) and only the required part of the mi-
crosound object is computed, leaving the rest of samples	
uncomputed, the pause time imposed during evaluation
can be significantly reduced.

We implemented a simple software framework in C++
from scratch to evaluate how effective this technique can
be in practice; as it is clearly more desirable to avoid the
influence from any other factors (such as memory alloca-
tion and garbage collection) when measuring the perfor-
mance efficiency, we opt to not directly integrate this tech-
nique into an existing language.

Figure 7 shows the excerpt of the definition of the abstract
class for microsound objects. As is present in line 06, each
samples within the Microsound instance can be accessed
by the overloaded operator ‘[]’. To exclude the influence
of memory allocation, which can consume a significant
amount of the CPU time from the measurement of the per-
formance efficiency, in this testing framework, all the
memory was allocated with the constructor method8, and
the init method performs any other initialization required
for sound synthesis. The init method also calls the _init
method of the subclass.

8 Based on the fact that the CPU time used for memory allocation is often
less predictable and can consume significant amounts of time, real-time
computer music software needs to take extra care, as discussed by Dan-
nenberg and Bencina [24].

Figure 7. The base class for all the microsound classes.

Figure 8. Excerpt of the sinewave microsound
 class implementation (the eager-evaluation).

 Figure 9. Excerpt of the sinewave miscrosound

 class implementation (the lazy-evaluation).

Figure 8 and Figure 9 present the excerpts from the imple-
mentation of the sinewave microsound class. Each figure
shows the versions that perform eager evaluation and lazy
evaluation, respectively. In Figure 8, before the instance
is created9, the _init method is called to fill the buffer to
with the waveform of the sine wave at once. The computed
samples can be accessed by the ‘[]’ operator.

On the contrary, in Figure 9, the _init method of the lazy
evaluation version only sets up the phase increment param-
eter, and does not compute any samples. Yet, when the in-
dexed access is performed, it verifies whether the sample

9 To exclude the CPU time for the memory allocation from the perfor-
mance evaluation, the required memory space was allocated before real-
time sound synthesis began. The other components performing signal
processing were executed during real-time synthesis.

01 MSLazySineWave::_init(void)
02 {
03 this->pahseInc = 2.0 * PI * freq / gSampleRate;
04 }
06 lc_sample MSLazySineWave::operator[](int64_t idx)
07 {
08 int64_t bitmapIndex = index / MSBLOCK_SIZE;
09 if (this->computedBlocks[bitmapIndex]){
10 return this->samples[idx];
11 }
12
13 int64_t start = bitmapIndex * MS_BLOCK_SIZE;
14 int64_t end = start + MS_BLOCK_SIZE;
15 if (end >= this>samples.size()){
16 end = this->samples.zie();
17 }
18
19 double phz = fmod(phaseInc * start, 2.0 * PI);
20 for (int64_t i = start; i < end; i++){
21 this->samples[i] = (lc_sample)(sin(phz)* amp);
22 phz += phaseInc;
23 }
24 this->computedBlocks[bitmapindex] = true;
25 return this->samples[idx];
26 }

01 //read three second from the buffer No.0.
02 var snd = ReadBuf(0, 1::second);
03 //play it.
04 WriteDAC(snd);
05
06 now += 0.5::second; //0.5 sec wait.
07
08 //resample it to 600 * 44100 samples.
09 //this temporarily suspend real-time synthesis,
10 //as it consumes too much CPU time.
11 var tmp = snd->resample(600 * 44100);

01 //the sinewave class (The eager-evaluation)
02 //called when the instance is initialized.
03 void MSEagerSineWave::_init(void)
04 {
05 double phase = 0.0;
06 double phaseInc = 2.0 * PI * freq / gSampleRate;
07
08 int64_t size = this->size();
09 for (int64_t i = 0; i < size; i++){
10 this->buf[i] = sin(phase) * amp;
11 phase += phaseInc;
12 if (phase > 2.0 * PI || phase < -2.0 * PI){
13 phase = fmod(phase, 2.0 * PI);
14 }
15 }
16 return;
17 }

01 class Microsound {
02 public:
03 Microsound(void);
04 virtual ~Microsound(void);
05 virtual int64_t size(void) = 0;
06 virtual lc_sample operator[](int64_t index) = 0;
07 virtual void init(void) final;
08 };

value at the index is previously evaluated. If already eval-
uated, the method simply returned the memoized value. If
not, it computes the sample value and return.

Note that one block of samples is computed altogether by
block processing to improve performance efficiency. The
internal buffers within the microsound objects are divided
into a number of the blocks with fixed size, and each block
is computed at once, when any access to a sample value
within the block is made. The flag if the block is already
computed or not is maintained in the separate bitmap (as
observed in lines 08-11 of Figure 9). Since the std::vec-
tor<bool> uses only one byte for eight elements of the
boolean type, each byte can manage the statuses of eight
blocks.

While lazy evaluation can distribute the cost of the com-
putation among the DSP cycles by computing on demand,
such block processing also contributes to increasing com-
putational efficiency when the computation is demanded;
thus, the pause time in the creation of microsound objects
can be significantly reduced.

Figure 10. A simple FM synthesis instrument

Figure 11. Performing FM synthesis

with microsound objects.
MSEagerSig and MSLazySig:
 is a microsound object with the constant values.
MSEagerWhiteNoise and MSLazyWhiteNoise:
 is a microsound object filled with white noise.

MSEagerSineWave and MSLazySineWave:
 is a microsound object filled with a sine wave. The frequency
and amplitude parameters are specified by floating point val-
ues.
MSEagerSineWave2 and MSLazySineWave2:
is a microsound object filled with a sine wave. The frequency
and amplitude parameters are given by other microsound ob-
jects.
MSEagerArithmetic and MSLazyAritmetic:
creates a new microsound objects. By performing an arithme-
tic operation (+,-,*,/) to two input microsound objects and

SUEnvelope:
creates a new microsound with the given envelope parame-
ters.

Table 1. The list of the available unit-generators

Table 1 lists the microsound objects prepared for the as-
sessment of the performance efficiency. While there are
few objects, these are enough to perform basic tasks, such
as additive synthesis and FM synthesis. For instance, a
simple FM synthesis (as portrayed in Figure 10) can be
carried out by combining these objects as seen in Figure
11.

4. PERFORMANCE MEASUREMENT

4.1 The Test Environment

As described in the previous section, the testing software
framework was written exclusively in C++ from scratch,
independently of any existing computer music software,
so that we could exclude other factors regarding the lan-
guage implementation as possible. We used the clock li-
brary function so that the exact CPU time spent for the
sound synthesis would be measured without the influence
of task-switching.

All the tests were performed on a Mac Book Air 2015 (11-
inch, Intel Core i5 1.6GHz, 4GB Memory, OS X El Capi-
tan). The code was compiled with the ‘-Ofast’ option (the
fastest aggressive optimization) with the Apple LLVM7.1
compiler. The I/O block size for the sound output was set
to 256 samples, and the sample rate was set to 44.1kHz.
The block size for the lazy evaluation version of mi-
crosound objects was set to 256 samples.

4.2 The Test Tasks

Table 2 outlines the test tasks for the evaluation. Each task
was performed five times for both eager evaluation and
lazy evaluation to measure the worst-case CPU time, the
best-case CPU time, and the average CPU time. Each task
generated the sounds of 10 sec, 30 sec, and 120 sec.

Task #1: White Noise with Ring Modulation
 A white noise sound is scaled by a sine wave sound.
Task #2: Additive Synthesis
 Additive synthesis consisting of four sine wave sounds

and one envelope applied to the entire sound.
Task #3: FM Synthesis
 A simple FM synthesis sound as described in Figure 10.

Table 2. The test tasks for the performance measurement.

4.3 The Test Results

Table 3 details the results of the test tasks. All the results
in the table are in milliseconds. The numbers in the ‘at the
initialization’ section refer to the worst-case CPU time
(max), the best-case CPU time (min), and the average CPU
time in the DSP cycle when the microsound objects are in-
itialized.

The numbers in the ‘rest’ section are the CPU times spent
in the rest of the DSP cycles until the end of the sound. The
total CPU time is the entirety of the CPU time spent fin-
ishing the evaluation of the microsound objects (the aver-
age of the five trials for each task).

01 //building a FM synth sound (carrier freq = 1000,
02 //modulator freq = 6, modulation depth = 15)
03 int64_t size = GetSampleRate() * 5;
04 mod = new MSLazySineWave (size, 6, 15);
05 cfreq = new MSLazySig (size, 1000);
06
07 //add the carrier freq and the modulater output.
08 freq = new MSLazyArithmetic('+', mod, cfreq);
09
10 //generating the final output samples.
11 amp = new MSLazySig (size, 1.0);
12 out = new MSLazySineWave2 (freq, amp);

At the initialization The rest Total
CPU time

(ms)
avg
(ms)

max
(ms)

min
(ms)

avg
(ms)

max
(ms)

min
(ms)

The Fastest-Aggressive Optimization (-Ofast)
Task 1: White Noise With Ring Modulation
10 sec
Eager 21.334 25.090 17.494 0.008 0.029 0.001 34.762
Lazy 0.088 0.092 0.081 0.029 0.105 0.012 50.518
30 sec
Eager 63.685 72.217 55.735 0.009 0.115 0.002 112.537
Lazy 0.053 0.062 0.046 0.032 0.158 0.011 164.912
120 sec
Eager 208.183 224.036 196.261 0.007 0.053 0.001 350.470
Lazy 0.077 0.092 0.055 0.038 0.192 0.010 794.457
Task 2: Additive Synthesis
10 sec
Eager 61.828 80.981 53.277 0.008 0.030 0.002 75.798
Lazy 0.089 0.107 0.052 0.083 0.489 0.033 142.842
30 sec
Eager 201.302 220.587 179.687 0.008 0.053 0.001 241.545
Lazy 0.095 0.137 0.058 0.083 0.502 0.032 427.433
120 sec
Eager 803.788 881.327 679.922 0.014 0.164 0.002 1092.172
Lazy 0.122 0.154 0.089 0.095 0.543 0.032 1954.035
Task 3: FM Synthesis
10 sec
Eager 27.320 33.822 24.116 0.008 0.143 0.002 41.423
Lazy 0.070 0.094 0.048 0.033 0.116 0.014 57.505
30 sec
Eager 84.239 106.615 67.021 0.008 0.050 0.001 124.650
Lazy 0.070 0.095 0.050 0.034 0.161 0.014 173.607
120 sec
Eager 352.669 406.257 288.634 0.013 0.284 0.002 621.765
Lazy 0.106 0.124 0.076 0.040 0.377 0.012 817.449

Table 3. The Test Results

5. DISCUSSION

5.1 The Evaluation of the Test Results

Overall, the test results indicated what was theoretically
expected. In the eager evaluation version, as the sizes of
the microsound objects became larger, the time costs as-
sociated with the evaluation at the initialization increased
almost proportionally. For example, the average CPU
time per DSP cycle (avg) observed for the FM synthesis
task by eager evaluation was 27.320 msec for the 10 sec
sound, 84.239 msec for the 30 sec sound, and 352.69 sec
for the 120 second. The time cost after the initialization
stayed constant regardless of the duration of the sound,
because it only retrieved the sample data already com-
puted at the timing of the initialization. As shown in Ta-
ble 3, it ranged from 0.08 msec to 0.014 msec.

In contrast, lazy evaluation significantly diminished the
pause time imposed by the manipulation of microsound
objects, even when the sizes of the microsound objects
were far beyond the microsound time-scale as in these
test tasks. The CPU cost in each DSP cycle remained
mostly constant regardless of the size of the microsound
object. For example, the CPU time spent at the initializa-
tion ranged between 0.053 msec and 0.122 msec, and the
average CPU time for the rest stays almost constant for
each task (0.029 – 0.33 msec for task 1, 0.083-0.095
msec for task 2, and 0.033 – 0.040 msec for task 3).
While it was observed that the total CPU time costs were
equal to roughly 1.5-2 times as much as the eager evalua-
tion version, the significant reduction of the pause time

10 If garbage collection utilizes reference counting [25] (or combine it
with another garbage collection mechanism), such memory space can be

achieved by lazy evaluation is quite favorable for com-
puter music applications. To meet the real-time deadline
is the most important criterion for real-time sound synthe-
sis.

Thus, the adoption of lazy evaluation in our technique
significantly reduced the pause time and therefore the
temporal suspension, as described in [3] and [4], can be
avoided. While our original microsound synthesis frame-
work in the LC language assumed only the use for mi-
crosound synthesis techniques, our lazy evaluation tech-
nique can aid in enlarging the potential application do-
main of his microsound synthesis framework, towards
more general sound synthesis techniques.

5.2 The Difference from Existing Works

As discussed in the Related Work section, there are not
many examples of the previous literature utilizing lazy
evaluation for digital sound synthesis, and these existing
works significantly differ from that which we presented
here. Both Fugue and Chronic perform non-real-time
sound synthesis. Fugue (and Nyquist) adopts lazy evalua-
tion to reduce memory allocation to improve the overall
performance efficiency and Chronic employs lazy evalua-
tion to express a data stream as an infinite-length vector;
in contrast, our work adopts lazy evaluation to reduce the
pause time in real-time sound synthesis, by distributing the
computational cost among the DSP cycles.

5.3 The Memory Usages

Memory usage is one of the issues needing to be discussed
regarding our technique. Indeed, this is one of the reasons
Nyquist utilizes block processing and does not memoize
the intermediate results, as the available physical memory
space was not as large as is common place today and the
allocation of large memory can lead to frequent paging
to/from the external storage, significantly damaging the
performance efficiency. However, computer systems have
much larger physical memory space nowadays, and the au-
dio data is not overly large for fitting in the physical
memory space in most situations. Moreover, while our cur-
rent implementation holds intermediate results, if the com-
puter music language has the garbage collection feature,
the intermediate results unreachable from the program can
be automatically released10.

5.4 The Extended Discussion

One of the possible extension for this technique is to greed-
ily evaluate the samples before they are actually needed.
The samples can be computed in other threads in parallel
with the audio thread. Generally speaking, when perform-
ing real-time sound synthesis, the audio thread periodically
computes the audio output with a certain interval so that it
can coordinate its computation with the progress of real

released immediately when it becomes unreachable. This would make the
reuse of the memory space allocated for microsound objects faster.

time. Such temporal behavior is important to realize inter-
active control in a computer music system.

However, while the sound synthesis is performed during
this periodic computation in the audio thread in the current
test environment, it is also possible to evaluate the sample
values left uncomputed within microsound objects in
background threads in parallel. This would not cause much
damage to the temporal behavior of the audio thread, since
it is not necessary to synchronize these threads for the au-
dio computation, if microsound objects are immutable (as
in LC’s Samples object). Even when the audio thread and
background threads compute the same block of samples
and evaluate the samples data simultaneously, the com-
puted results are identical because of immutability; hence,
the evaluation can be performed in parallel without any
problem and significant improvement of the computational
efficiency can be expected with multithreading.

6. CONCLUSIONS AND FUTURE WORK
In the present work, we proposed a solution to the problem
of temporary suspension of real-time sound synthesis as
seen in the microsound synthesis framework in the LC lan-
guage. By adopting lazy evaluation to manipulations of
microsound objects, the pause time imposed by the manip-
ulations of microsounds can be significantly diminished
and, thus, temporary suspension can be avoided. Such a
feature is quite favorable for utilizing the software abstrac-
tion of the microsound synthesis framework in more gen-
eral applications beyond microsound synthesis. When
combined with the reusability of previously computed
samples (e.g., reusing the pre-generated microsounds), a
significant improvement can be expected in the perfor-
mance efficiency in real-time sound synthesis, which ex-
isting unit-generator languages can hardly emulate.

For the future research, we are planning to extend the tech-
nique, as alluded to earlier, to evaluate samples that are
still not yet computed, greedily in multithreads, for further
improvement in the performance efficiency.

Acknowledgments

We gratefully thank Prof. Roger Dannenberg for providing
us the detailed information on the Fugue language.

7. REFERENCES
[1] C. Roads, Microsound, MIT Press, 2004.
[2] C. Roads, The Computer Music Tutorial, MIT press,

1996
[3] H. Nishino, LC: A Mostly-strongly-timed Prototype-

based Computer Music Programming Language that
Integrates Objects and Manipulations for Mi-
crosound Synthesis, Ph.D. Thesis, National Univer-
sity of Singapore, 2014

[4] H. Nishino, et al., “The Microsound Synthesis
Framework in the LC Computer Music Program-
ming Language.” In Computer Music Journal, 39(4),
MIT Press, 2016, pp.49-79.

[5] C. Roads, “Introduction to Granular Synthesis,”
Computer Music Journal 12(2), MIT Press, 1988,
pp.11-13

[6] X. Rodet, “Time-Domain Formant-Wave-Function
Synthesis,” In Spoken Language Generation and Un-
derstanding. Springer, pp.429-441.

[7] J.M. Clarke, et al. “VOCEL: New Implementations
of the FOF Synthesis Method,” In Proc. ICMC,
pp.357-371.

[8] T. Wishart, Audible Design. Orpheuse the Panto-
mime, 1994.

[9] D. Gabor, “Lectures on Communication Theory,”
Technical Report 238, Massachusetts Institute of
Technology, Research Laboratory of Electronics,
1952.

[10] E. Brandt, “Temporal Type Constructors for Com-
puter Music Programming,” In Proc. ICMC, 2000.

[11] R. Boulanger. The Csound Book: Perspectives in
Software Synthesis, Sound Design, Signal Pro-
cessing, and Programming, MIT Press, 2000.

[12] E. Brandt, “Temporal Type Constructors for Com-
puter Music Programming,” PhD dissertation, Car-
negie Melon University, 2008

[13] A.F. Blackwell and T.R.G. Green, “Notational sys-
tems - the cognitive dimensions of notation frame-
work “, In HCI models, theories and frameworks:
Toward a multidisciplinary science, Morgan Kauf-
mann, 2003, pp. 103–134.

[14] S. Wilson., et al., The SuperCollider Book. MIT
Press, 2011

[15] S.P. Jones, Haskell 98 Language and Libraries: the
Revised Report. Cambridge University Press, 2003.

[16] Y. Minsky, et al., Real World OCaml: Functional
Programming for the Masses, O’Reilly, 2013.

[17] M. Odersky, et al., An Overview of the Scala Pro-
gramming Language., No. LAMP-REPORT-2004-
006, École Polytechnique Fédérale de Lausanne,
2004.

[18] W. Apple and P. Jens, Modern Compiler Implemen-
tation in Java. MIT Press, 2002.

[19] R. B. Dannenberg., et al., "Fugue: A functional lan-
guage for sound synthesis," In Computer 24.7, 1991
pp.36-42.

[20] R. B. Dannenberg. In an email exchange, dated Apr
18th, 2016.

[21] D. M. Betz, Xlisp: An Object-Oriented Lisp, Ver-
sion 2.1., Apple, 1989

[22] R.B. Dannenberg, “The Implementation of Nyquist,
A Sound Synthesis Language,” In Computer Music
Journal 21.3, 1997, pp.71-82.

[23] H. Abelson., and G. J. Sussman, Structure and Inter-
pretation of Computer Programs, MIT Press, 1996.

[24] R. B. Dannenberg, and R. Bencina, "Design patterns
for real-time computer music systems," ICMC 2005
Workshop on Real Time Systems Concepts for
Computer Music, In Proc. ICMC, 2005.

[25] G. E. Collins, “A method for overlapping and eras-
ure of lists,” Communications of ACM, 3 (12),
pp.655-657

