

UNIT-GENERATORS CONSIDERED HARMFUL (FOR
MICROSOUND SYNTHESIS): A NOVEL PROGRAMMING
MODEL FOR MICROSOUND SYNTHESIS IN LCSYNTH

Hiroki NISHINO Naotoshi OSAKA Ryohei NAKATSU
NUS Graduate School for

Integrative Sciences & Engineering,
National University of Singapore

g0901876@nus.edu.sg

Dept. of Information Systems
& Multimedia Design, Tokyo

Denki University
Osaka@dendai.ac.jp

IDM Institute,
National University of

Singapore
elenr@nus.edu.sg

ABSTRACT

In this paper, we describe a novel programming model
for microsound synthesis techniques in LCSynth, a
strongly-timed sound synthesis language, with concrete
examples in granular synthesis and waveset synthesis.
Instead of encapsulating microsound synthesis
techniques inside unit-generators, LCSynth provides
objects and manipulations for microsound synthesis.

We discuss the benefits of such a language design for
creative explorations in the domain of microsounds and
why the traditional unit-generator concept may not be
very appropriate for this domain. Such a discussion is
beneficial to the further development of new sound
synthesis frameworks and computer music languages.

1. INTRODUCTION

The unit-generator concept is one of the most important
domain-specific core abstractions developed in the
history of computer music. While there exist many
varieties in how the concept is actually implemented and
integrated into the language design, many computer
music languages are built upon this concept even today.

The unit-generator concept is still quite beneficial for
various sound synthesis techniques. Its encapsulation of
signal processing algorithms with the common
interfaces makes it able to compose more complex
signal processing modules as the interconnected unit-
generators. Most implementations, except very few,
autonomously perform signal processing without
explicit scheduling of the timing when to compute the
output; such features significantly reduce the amount of
effort that users must make in implementing various
sound synthesis algorithms.

However, it should be reconsidered if the traditional
unit-generator concept is still appropriate for
microsound synthesis techniques; some previous works
discussed the related issues such as better software
design or appropriate extensions to sound synthesis
frameworks, which would be more suitable for
microsound synthesis techniques [1,4].

In our previous publication [11], we argued the
difficulty in programming microsound synthesis
techniques, from the perspective of structural misfit [3]
between the sound synthesis frameworks built on the
unit-generator concept and the conceptualization of
microsound synthesis by users. We discussed this

conceptual gap as a significant cause of the difficulty
involved in microsound synthesis programming in the
unit-generator languages; this argument led to the design
and the development of LCSynth, a strongly-timed
sound synthesis language that integrates objects and
manipulation for microsounds, based on the assumption
that the removal of such a conceptual gap between the
software frameworks and the user’s conceptualization
can result in better language design that can facilitate
microsound synthesis programming.

In this paper, we first describe a novel programming
model for microsound synthesis in LCSynth, by giving
concrete examples for two microsound synthesis
techniques (granular synthesis and waveset synthesis).
Then, we discuss how such a design concept of
LCSynth 	
 can facilitate creative explorations by
computer musicians in microsound synthesis and why
the traditional abstraction of the unit-generator concept
may not be truly appropriate for this problem domain;
the features provided by unit-generators, the
encapsulation of signal processing algorithms and the
autonomous timing behavior without explicit
scheduling, can turn into significant obstacles when
exploring microsound synthesis techniques.

Such a discussion can be beneficial for both the further
research in computer music software engineering and
for the future development of more usable computer
music programming languages.

2. RELATED WORK

2.1. Unit-Generator and Microsound Synthesis

2.1.1. Unit-generator

A unit-generator is “a software module that emits audio
or control signals (envelopes) or modifies these signals”
[13, p.787] and the concept first appeared in MUSIC-III
language in 1960 [9]. In his book written in 1969,
Mathews, the inventor of the unit-generator concept,
describes that unit-generators perform “conceptually
similar functions to standard electronic equipment used
for electronic sound synthesis”[10, p.15]; thus, the
original unit-generator concept is strongly associated
with the electronic sound synthesis by electronic
equipment.

Once the graph of unit-generators is built and the sound
synthesis starts, the unit-generators autonomously

compute the required amount of samples for sound
output when necessary; users do not have to explicitly
specify the timing when to compute sound output from
the unit-generators. Only few computer music
environments, such as Chuck [14], LCSynth [11],
Marsyas [5], allow such explicit timing control.

2.1.2. Microsound synthesis

Dennis Gabor, a British physicist, in mid-1940s, first
proposed the concept that originated the microsound
synthesis techniques. Roads briefly describes the concept
as “in Gabor’s conception, any sound can be
decomposed into a family of functions obtained by time
and frequency shift of a single Gaussian particle.
Another way of saying this is that any sound can be
decomposed into an appropriate combination of
thousands of elementary grains” [12, p.57].

While Gabor’s theory is more strongly associated with
time-frequency analysis rather than with computer music
sound synthesis, microsound synthesis techniques we
have today is derived from his concept that the entire
sounds can be composed of short sound particles.
Generally speaking, microsound synthesis techniques are
realized by the overlap-add of such short sound particles
with various waveforms, durations and intervals.

Yet, it should be noted here that this concept of
microsound is brought to computer music practices
much later than the emergence of the unit-generator
concept (in 1960). For instance, one of the earliest
experiments in microsound synthesis was realized by
Roads on a mainframe computer in 1974 [12, p.302]; the
unit-generator concept could never have taken
microsound synthesis into consideration when it was
invented.

2.1.3. The conceptual gap between the unit-generator
concept and microsound synthesis techniques

A significant difference can be found between the
concept of the unit-generator and one of microsound
synthesis. As Mathews mentioned, the former is
modeled after electronic sound synthesis and is quite
similar the ‘orthodox method’ that “starts with the
assumption that the signal s is a function s(t) of time t”,
which Gabor contrasted to his new theory [7]. Such a
concept significantly differs from the concept of
microsound synthesis, in which the entire sound consists
of many short sound particles that overlap-add.

In our previous publication [11], we discussed such a
gap as a source of difficulty in programming microsound
synthesis techniques as seen in the existing sound
synthesis framework. By comparing the nine musical
time-scales in computer music by Roads [12, p.3] and
the representation within the unit-generator based sound
synthesis framework, we assessed that the difficulty in
programming microsound synthesis techniques is due to
the lack of the counterpart entities to microsound time-
scale in the existing sound synthesis frameworks;
generally speaking, it is considered that such an
abstraction in software design incompatible with the

user’s conceptualization can cause significant usability
problems [2]. Blandford calls such a gap as a conceptual
misfit in her framework for the analysis of usability
problems called CASSM (Concept-based Analysis of
Surface and Structural Misfits) [3].

2.2. LCSynth

Based on the assessment as above, we developed a new
sound synthesis language: LCSynth. As we argued in
[11], the design of LCSynth aims to remove a
conceptual misfit between the user’s conceptualization
of microsound synthesis techniques and the traditional
unit-generator languages, by directly integrating objects
and manipulations for microsounds.

LCSynth is a strongly-timed programming language. As
seen in ChucK [14], strongly-timed programming is a
variation of synchronous programming and is based on
logical synchronous time rather than the passage of real-
time. A strongly-timed program explicitly advances a
logical synchronous time and thus allows the precise
timing behaviours in logical time, which is significantly
desirable for computer music applications.

LCSynth also has traditional unit-generators. Figure 1
describes a simple sine wave oscillator instrument in
LCSynth. In LCSynth, a sound synthesis module is
defined as a synth object. The line 01-08 defines such a
synth object, giving the name, SinA. In line 02-04, a
unit-generator graph is defined inside the ugens block.
In this example, the output from ~Sin (a sine wave
oscillator) is connected to the input of ~DAC (sound
output). The ~Sin object is given a name of sin so that it
can be referred in the other part of the code. In line 05-
07, the synmain function for this synth object is defined.
This function is immediately called when an instance of
this synth object start playing. In this example, the
synmain function has one argument freq with its default
value 440. This value is used to set the frequency of sin
by calling ‘setFreq’ method of ~Sin (line 06).

As previously described, LCSynth integrates objects and
manipulations for microsound synthesis. A Samples
object in LCSynth is a counterpart entity for a short
sound particle in the concept of microsound synthesis
and contains arbitrary number of samples within. A
Samples object is immutable and the samples within a
Samples object cannot be changed after its creation.
Instead, LCSynth also provides SampleBuffer objects as
a mutable object. A SampleBuffer can be converted to
Samples1 and vice versa.

1 The relationship between Samples and SampleBuffer in LCSynth is
similar to the relationship between String and StringBuffer in Java.

Figure 1. A simple sine wave instrument example in LCSynth

01:synth SinA {
02: ugens {
03: sin:~Sin() -> ~DAC();
04: }
05: synmain(freq = 440){
06: sin.setFreq(freq);
07: }
08:}

Figure 2 above is another version of a simple sine wave
oscillator instrument in LCSynth. Instead of unit-
generators, it involves Samples and SampleBuffer
objects in sound synthesis, together with the strongly-
timed programming feature of LCSynth. In line 04-07, a
sine wave table of 512 samples is created, using a
SampleBuffer object. This table is converted to Samples
object (line 09) and then resampled to fit its size to the
given frequency2 (line 11). In the main loop (line 13-
18), the samples within sin is first written out to DAC
output by WirteDAC() function (line 16) and then the
program sleeps until the next output timing3 (line 17).
Since LCSynth is strongly-timed, this sleep time is in
logical synchronous time and thus it assures sample-rate
accuracy; thus, the program behaves as a sine wave
oscillator instrument.

Additionally, LCSynth also provides the means to
stream the samples within Samples objects to the unit-
generators. Figure 3 briefly illustrates such an example.
A ~Bridge unit-generator has its own internal buffer,
which can be used to write the samples from Samples
object. ~Bridge object streams the written samples to the
other unit-generator. In line 20, the samples are written
directly into the internal buffer of brg, an instance of
~Bridge() unit-generator, by write() method and then
immediately routed to ~ADSR object. This write()
method overlap-add the written samples as in
WriteDAC() function.

We will not particularly emphasize this feature in the
later sections, as our focus is on the programming model
for microsound synthesis in LCSynth. Yet, such a
collaboration between the unit-generators and any
synthesis algorithm is always possible via a ~Bridge
object.

2 Since Samples is a immutable object, it returns a new Samples object,
which is resampled to the given size.
3 ‘now’ is a special variable that stands for the current system logical
time. A thread can sleep by adding a duration value (such as 5::samp
or 10::second) to ‘now’ as seen in Figure 2, line 17.

2.3. LCSound

LCSynth itself is a synthesis language, which focuses on
the descrpitions of sound synthesis algorithms.
LCSound is a simple score/instrument type of computer
music language that encloses LCSynth within, which is
developed as a test-bed for LCSynth.

We briefly describe an example in LCSound in Figure 4.
The file is separated into two sections, orchestra and
score. The orchestra section (line01-10) is the section
where the definitions of synth objects in LCSynth are
described. As seen line 03-09, the orchestra section can

01:synth SinA {
02: synmain(freq = 440){
03: //create a sine wave table.
04: var buf = new SampleBuffer(512);
05: for (var i = 0; i < buf.size; i +=1){
06: buf[i] = Sin(6.28318530718 / buf.size * i);
07: }
08: //convert it to a Samples object.
09: var tmp = buf.toSamples();
10: //resample to the given frequency.
11: var sin = tmp.resample(44100.0 / freq);
12:
13: while(true){
14: //write the samples directly to DAC.
15: WriteDAC(sin);
16: //wait until the next DAC output timing.
17: now += (sin.size)::samp;
18: }
19: }
20:}

01:synth SinB {
02: ugens {
03: brg:~Bridge () -> env:~ADSR() -> ~DAC();
04: }
05: synmain(freq = 440, dur){
05: //create a sine wave table.
06: var buf = new SampleBuffer(1024);
07: for (var i = 0; i < buf.size; i +=1){
08: buf[i] = Sin(6.28318530718 / buf.size * i);
09: }
10: var tmp = buf.toSamples();
11: var sin = tmp.resample(44100.0/freq);
12:
13: //trigger the ADSR envelope .
14: env.keyOn();
15: //calculate the trigger-off and stop timing.
16: var keyOffTiming = now + 1::second;
17: var stopTime = now + dur::second;
18:
19: while(now < stopTime){
20: brg.write(sin);
21: //calculate the next DAC output timing.
22: var nextTiming = now + (sin.size)::samp;
23: //check if we reach the key off timing.
24: if (nextTiming >= keyOffTiming){
25: //wait until the key off timing.
26: now = keyOffTiming;
27: //release the envelope.
28: env.keyOff();
29: //not to call keyOff() again.
30: keyOffTiming = stopTime;
31: }
32: //wait until the next DAC output timing.
33: now = nextTiming;
34: }
35: }
36:}

01:orchestra {
03: //create a sine wave table.
04: var buf = new SampleBuffer(512);
05: for (var i = 0; i < buf.size; i +=1){
06: buf[i] = Sin(6.28318530718 / buf.size * i);
07: }
08: //set the sine wave table to a global variable.
09: global gSin = buf.toSamples();
10:
11: synth SinA {
12: synmain(freq = 440){
13: //below is to access a global variable.
14: global gSin;
15: //resample to the given frequency.
16: var sin = gSin.resample(44100.0 / freq);
17: while(true){
18: //write the samples directly to DAC.
19: WriteDAC(sin);
20: //wait until the next output timing.
21: now += (sin.size)::samp;
22: }
23: }
24: }
25:}
26:score
27:{
28: 0.0: SinA() for 8.00,
29: SinA(freq:880) for 4.00;
30: 2.0: SinA(freq:1760) for 5.00;
31:}

Figure 2. An example code for a simple sine wave
instrument without unit-generators in LCSynth

Figure 3. An example of the combination of unit-
generators and Samples objects in LCSynth

Figure 4. An example code of LCSound

also contain the code fragments. In this example, a sine
wave table is created and set to a global variable gSin so
that it can be shared by the instances of SinA, which is
defined between line 11-23.

The defined synth objects can be used in Score section
(line 26-31). First, the start time in second is placed
before ‘:’ and then the name of synth object follows with
the argument(s) given to its synmain function. As seen
in Figure 4, LCSound supports the named parameters
and the default value. The duration (in second) to play
the synth object can be specified after ‘for’. The notes
that shares the same start time can be juxtaposed after
‘,’ (line 28-29). As above, LCSound is a typical
score/instrument language, which is similar to CSound.
The current version of LCSound can run both in real-
time and in non real-time.

3. PROGRAMMING MICROSOUND
SYNTHESIS IN LCSYNTH

3.1. Granular synthesis

3.1.1. Synchronous Granular Synthesis
Synchronous granular synthesis is a kind of granular
synthesis, in which “sounds results from one or more
streams of grains. Within each stream, one grain follows
another, with a delay period between the grains.
Synchronous means that the grains follow each other at
regular intervals” [12, p.93].

Figure 5 below describes an example code of
synchronous granular synthesis in LCSynth. In this
example, we use just one cycle of sine wave as a grain
and set it to a wave table (line 01- 05). The synmain
function of this example takes 3 arguments, dur for the
duration of the entire sound, interval for the regular
intervals between grains and gsize for the size of the
grain in samples. Line 11 generates a grain by
resampling the wave table. In the following main loop
(line 12-15), first a single grain is written out for DAC
output. Then the program sleeps for the interval (with
sample-rate accuracy), and the next grain is then written
out for DAC output. The overlap-add is performed
automatically and thus synchronous granular synthesis
can be performed by such a simple code.

3.1.2. Quasi-synchronous granular synthesis
Quasi-synchronous granular synthesis is another
variation of granular synthesis, in which “the grains

follow each other at unequal intervals, where a random
deviation factor determines the irregularity” [12, p.93].

Figure 6 below is an example of quasi-synchronous
granular synthesis in LCSynth. As seen in this example,
the modification from the previous example of
synchronous granular synthesis is quite simple; only line
08 is modified so that the intervals can be randomized
between the values of interval1 to interval2.

3.1.3. Time-stretching and Pitch-shifting

While there exist phase-vocoding techniques for time-
stretching and pitch-shifting, microsound synthesis
techniques called granular sampling [8] are also known
as simple and computationally efficient techniques for
time-stretching and pitch-shifting.

Figure 7 above is a simple granular sampling example
for time-stretch without pitch change. In the following
explanation, assume a ratio parameter of two is assumed
(line 04) to time-stretch the samples to twice the length
of the original. The main loop (line 08-16) first read
100ms of samples from the buffer and applies a hanning
window to create a single grain and then write it out to
DAC. Then, the program sleeps for 50ms before the
next grain (line 13) 4 . Yet, the reading position is
advanced to the next position, but only by 50ms / 2 =
25ms (line 14). As the reading position advances only at
half the speed of the advance of the logical time, the
sound can be time-stretched to twice as long as the
original sound.

On the contrary, pitch-shifting without changing of the
duration of the sound is achieved by resampling of the
original sound data by the unit of grains. Figure 8 shows

4 As the duration of grain is 100ms, this causes grains to overlap-add
with the interval of every 50ms

01:var tmp = new SampleBuffer(256);
02:for (var i = 0; i < tmp.size; i +=1){
03: tmp[i] = Sin(6.28318530718 / tmp.size * i);
04:}
05:global gTable = tmp.toSamples();
06:
07:synth SyncGran {
08: synmain(dur, interval, gsize){
09: global gTable;
10: var stopTime = now + dur::second;
11: var grain = gTable.resample(gsize);
12: while(now < stopTime){
13: WriteDAC(grain);
14: now += interval::samp;
15: }
16: }
17:}

01:synth QuasiSyncGran {
02: synmain(dur, interval1, interval2, gsize){
03: global gTable;
04: var stopTime = now + dur::second;
05: var grain = gTable.resample(gsize);
06: while(now < stopTime){
07: WriteDAC(grain);
08: now += Rand(interval1, interval2)::samp;
09: }
10: }
11:}

Figure 5. A synchronous granular synthesis example in
LCSynth

Figure 6. A quasi-synchronous granular synthesis
example in LCSynth

Figure 7. A time-stretching example in LCSynth

01:LoadSndFile(0, “test.aif");
02:
03:synth TimeStrech {
04: synmain(ratio, dur){
05: var stopTime = now + dur::second;
06: var pos = 0::second;
07: var window = GenWindow(100::ms, \hanning);
08: while(now < stopTime){
09: var read = ReadBuf(bufno :0, dur: 100::ms,
10: offset:pos);
11: var grain = read.applyEnv(window);
12: WriteDAC(grain);
13: now += 50::ms;
14: pos += 50::ms / ratio;
15: }
16: }
17:}

a simple example of this technique. This time, we
change the number of samples to read from the buffer
and then resample it to the desired grain size so that we
can shift the pitch of the original sound; for instance, if
882 samples of the sound data is read as a grain and then
resample to 441 samples, the pitch of the grain is shifted
an octave higher than the original in this example, since
the sampling rate stays the same.

3.2. Waveset Synthesis

Waveset synthesis techniques also belong to the family
of microsound synthesis techniques. Waveset synthesis
techniques are realized as various kinds of
manipulations of short sound particles called wavesets.
According to Wishart, a waveset is defined as a
“distance from zero-crossing to a 3rd zero-crossing”
whereas wavecycle is defined as “wavelength of sound,
where clearly pitched” [17, p.50]. Figure 9 below taken
from [17, p.50] briefly illustrates wavesets and
wavecycles. As seen in this figure, a wavecycle can
contain more than one wavesets, while the waveform
and the length of a waveset can vary significantly.
While there are a number of different waveset synthesis
techniques 5 , we take 4 of these for the following
implementation examples in LCSynth.

3.2.1. Waveset inversion

Waveset inversion is a technique that inverts a waveset
in time domain as seen in Figure 10 (right), and “usually

5 For instance, 17 different techniques are available in Wishart’s
Composer Desktop Project software in [11, p207].

produces an “edge” to the spectral characteristics of
the sound” [16, p.42]. Figure 11 below describes an
example of waveset inversion in LCSynth. First, a sound
file is loaded onto the buffer no.0 by LoadSndFile()
function and then the wavesets are obtained from the
buffer by ExtractWaveSets() function. This function
returns an array of the wavesets extracted from the
buffer.

While it is possible to implement the algorithm to invert
a waveset by accessing each sample within a Samples
object and by using a SampleBuffer to generate an
inverted waveset, Samples has invertWS(), a method that
returns the inverted waveset as seen in Figure 10. Since
Samples is immutable, invertWS() returns a new
instance of Samples. In line 07-08, WriteDAC() method
is used to output an inverted waveset to DAC and then
the program sleeps for exactly the size of the samples in
the logical synchronous time. This procedure is repeated
until all the wavesets are inverted and output.

3.2.2. Waveset transposition

Waveset transposition is a technique that “substitutes N
copies of a waveset in the place of M wavesets, for
example 2 in the space of 1 or 1 in the space of 4, for
doubling and quartering of frequency respectively”. [17,
p.50]. Figure 10 (left) illustrates this waveset synthesis
technique.

Figure 12 in the next page shows two examples of
waveset transposition, one that substitutes 2 wavesets
for 1 (octave up) and one that substitutes 1 waveset for 2
(octave down) as seen Figure 10(left). To change the
size of a waveset, the resample() method can be used as
in line 09 and 23. For waveset transposition to substitute
2 wavesets for 1, it is enough to output the waveset
resampled to the half size of the original twice as seen in
line 10-13 and for waveset transposition to substitute 1

00:synth PitchShift {
00: synmain(pitch, dur){
00: var stopTime = now + dur::second;
00: var pos = 0::second;
00: var window = GenWindow(441::samp);
00: while(now < stopTime){
00: var size = 441:: samp * pitch;
00: var read = ReadBuf(bufno :0 , dur: size,
00: offset:pos);
00: read = read.resample(read.size / pitch);
00: var grain = read.applyEnv(window);
00: WriteDAC(grain);
00: now += 50::ms;
00: pos += 50::ms;
00: }
00: }
00:}

01:LoadSndFile(0, test.aif");
02:global wavesets = ExtractWaveSets(0);
01:synth WSInvert {
02: synmain(){
03: global wavesets;
04: for (var i = 0;i < wavesets.size; i += 1){
05: var orig = wavesets[i];
06: var inverted = orig.invertWS();
07: WriteDAC(inverted);
08: now += inverted.size::samp;
09: }
10: }
11:}

Figure 8. A pitch-shifting example in LCSynth

Figure 9. Wavecycles and wavesets (taken from [17 , p.50])

Figure 11. A waveset inversion example in LCSynth

Figure 10. the pictorial representations of waveset
transposition (left) and waveset inversion (right) [17, p.50]

for 2, the size of a waveset is doubled by resampling and
then skip the next one after DAC output (line 23-26).

3.2.3. Waveset substitution

Waveset substitution “replaces wavesets by a stipulated
waveform of the sample amplitude, frequency and time
span as the original waveset”[12, p.207]. Figure 13 (left)
illustrates the waveset synthesis technique pictorially. In
this example, the original wavesets are substituted with
sine waves and square waves. The code for waveset
substitution in LCSynth is shown in Figure 14. Suppose
wavesets are already extracted from a buffer and set to a
global variable wavesets before this code. First, a wave
table of square wave is generated in line 01-07. This
wave table is set to a global variable square in line 08. In
the main loop (line 14-20), a waveset is taken from the
array of wavesets one by one. Then, a square wave is
resampled to the same size as the original waveset and
amplified to the same amplitude (line 16-17). This new
waveset is used for substitution and written to DAC
output, followed by sleeping until the timing to schedule
the next waveset (line 18-19); thus, a waveset
substitution is performed.

3.2.4. Waveset harmonic distortion

Waveset harmonic distortion “superimposes N
harmonics on the waveset fundamental with a scaling M
relative to the previous harmonic” [12, p.207]. Figure
13 (right) illustrates this technique pictorially.

We describe an example of waveset harmonic distortion
in LCSynth in Figure 15. In line 06-08, wavesets for the
2nd and 3rd harmonics are generated from the original by
resampling. These three wavesets are then weighted by
the given arguments (line 10-12). First, the original
waveset is written out to DAC (line 14) and the waveset
of 2nd harmonics is written out exactly at the same
timing. Then, the 2nd harmonics is written again, but this
time it is given an offset of its own sample size (line17).
The results in this waveset is written at the timing right
after the 1st one. The same procedure is applied to the 3rd
harmonics (line 19-21).

In line 23, the program wait until the next timing
schedule by sleeping for the duration of the original
wavesets; thus waveset synthesis can be realized.

01:LoadSndFile(0, “test.aif");
02:global wavesets = ExtractWaveSets(0);
03://waveset transposition (octave up)
04:synth WSTransA {
05: synmain(){
06: global wavesets;
07: for (var i = 0; i < wavesets.size; i += 1){
08: var orig = wavesets[i];
09: var octup = orig.resample(orig.size / 2);
10: WriteDAC(octup);
11: now += octup.size::samp;
12: WriteDAC(octup);
13: now += octup.size::samp;
14: }
15: }
16:}
17://waveset transposition (octave down)
18:synth WSTransB {
19: synmain(){
20: global wavesets;
21: for (var i = 0;i < wavesets.size - 1; i += 2){
22: var orig = wavesets[i];
23: var octdown = orig.resample(orig.size * 2);
24: WriteDAC(octdown);
25: now += octdown.size::samp;
26: }
27: }
28:}

01:synth WSHarmDist {
02: synmain(weight1, weight2, wieght3){
03: global wavesets;
04: for(var i = 0;i < wavesets.size; i += 1){
05: //the original, 2nd and 3rd harmonics.
06: var orig = wavesets[i];
07: var oct1 = orig.resample(orig.size / 2);
08: var oct2 = orig.resample(orig.size / 3);
09: //weight each of them.
10: orig = orig.amplify(weight1);
11: oct1 = oct1.amplify(weight2);
12: oct2 = oct2.amplify(wieght3);
13: //write out the original.
14: WriteDAC(orig);
15: //write out the 2nd harmonics.
16: WriteDAC(oct1);
17: WriteDAC(oct1, offset: oct1.size::samp);
18: //write out the 3rd harmonics.
19: WriteDAC(oct2);
20: WriteDAC(oct2, offset: oct2.size::samp);
21: WriteDAC(oct2, offset: oct2.size::samp * 2);
22: //wait until the next scheduling timing.
23: now += orig.size::samp;
24: }
25: }
26:}

Figure 12. A waveset transposition example in LCSynth

Figure 14. a waveset substitution example in LCSynth

Figure 15. A waveset harmonic distortion example in LCSynth

 Figure 13. waveset substation and waveset harmonic
distortions (taken from [17, p.50])

01:var sqbuf = new SampleBuffer(256);
02:for(var i = 0; i < sqbuf.size / 2; i += 1){
03: sqbuf[i] = 1.0;
04:}
05:for(var i = sqbuf.size/2; i < sqbuf.size; i += 1){
06: sqbuf[i] = -1.0;
07:}
08:global square = sqbuf.toSamples();
09:
10:synth WSSubst {
11: synmain(){
12: global wavesets;
13: global square;
14: for(var i = 0;i < wavesets.size; i += 1){
15: var orig = wavesets[i];
16: var tmp = square.resample(orig.size);
17: var out = tmp.amplify(orig.maxAmp());
18: WriteDAC(out);
19: now += out.size::samp;
20: }
21: }
22:}

4. DISCUSSION

4.1. Unit-Generators Considered Harmful for
Microsound Synthesis

In a sound synthesis framework built upon the unit-
generator concept, DSP algorithms are encapsulated
inside the unit-generators with common interfaces that
allow the composition of the unit-generators to describe
more complex sound synthesis algorithms. Many sound
synthesis frameworks, except a very few, provide
autonomous behaviours for the timing of when the
computations of sound output must be performed, so
that users do not have to explicitly schedule the timing.

While these features are quite beneficial for many sound
synthesis algorithms, such an abstraction also revokes
the access to the details required for the experiments in
the level of microsound time-scale from users. The
samples that are routed between unit-generators are
normally hidden or hardly accessible from the users and
no direct counterpart entities for short sound particles,
e.g. grains or wavesets, are provided. Thus, in such a
framework, even a very simple microsound synthesis
technique may involve a certain degree of complexity,
regardless of its conceptual simplicity.

For instance, it is very common in many granular
synthesis techniques to apply an envelope made of some
window function to a fragment of samples taken from
some sound data and to overlap-add them to constitute
the processed sound. Such kind of task can also be seen
in the time-stretching example (Figure 7) and the pitch-
shifting example (Figure 8). Yet, to perform this simple
task only within the unit-generator-based synthesis
framework, each single grain needs to be modeled as a
note-level object and overlap-add of grains is realized
by simultaneously playing such note-level objects.
Roads describes such a typical strategy in [12, p.91].

While the lack of precise timing control is due to the
implementation rather than the unit-generator concept
itself, autonomous behavior in sample computation
timing makes it harder to schedule grains with precise
timing and results in inaccurate sound output in many
existing synthesis framework. Such an inaccuracy in
timing can be clearly audible to human perception; as
such frameworks revoke the access to the explicit timing
control, it can often involve cumbersome programming
patterns to compensate imprecise timing behavior. For
instance in SuperCollider [15], it frequently involves a
programming pattern to schedule a synth object ahead of
time, with offset to the actual timing and to use
OffsetOut unit-generator for better accuracy in
microsound synthesis.

Furthermore, even though it is also possible to enclose
the whole algorithm of a microsound synthesis
technique within a unit-generator to achieve accurate
sound output, such an encapsulation makes it impossible
to modify or extend the encapsulated algorithms by
users for further creative experiments.

As above, while the encapsulation of DSP algorithms
and the autonomous behaviour are important features of

the unit-generator-based sound synthesis frameworks,
such features turn into significant obstacles when users
want to explore in the domain of microsounds; the
entities of microsounds and the synthesis algorithms are
hidden from inside within the unit-generators by
encapsulation. Autonomous behaviour in computation
timing also makes it hard to control the behaviour of the
unit-generators with sample-rate accuracy. However,
users need to access these hidden details to modify and
to extend the synthesis algorithm of microsound
synthesis techniques for creative exploration; thus, the
difficulty in implementing microsound synthesis
techniques in the unit-generator based sound synthesis
frameworks is indeed caused by the features of the unit-
generators themselves, even though hiding such details
is beneficial for many other sound synthesis techniques.

4.2. The Benefits of LCSynth’s Language Design and
Its Programming Model for Microsound Synthesis

On the contrary, the design of LCSynth is designed to
avoid hiding such details and makes them accessible to
users. It provides the entities of microsounds as Samples
object and SampleBuffer object with many related
functions that manipulate these objects. At the same
time, strongly-timed programming supports the precise
timing behavior required for accurate sound rendering
results. LCSynth also takes it into consideration in its
design to automatically perform overlap-add operation
to Samples objects and to schedule them in the future
timings.

As programmers “use knowledge from at least two
domains, the application (or problem) domain and the
computing domain, between which they establish a
mapping”[6, p22] in programming activity, it is quite
beneficial to provide objects and functions in a
computer music language, which can be considered as
the direct counterparts for the entities in the user’s
conceptualization of microsound synthesis; mapping
between the program code (the computing domain) and
the conceptualization of synthesis algorithm (the
application domain) can be made a lot easier without
involving incompatible mapping.

Moreover, since LCSynth doesn’t have to encapsulate
microsound synthesis algorithms as seen in unit-
generators, the modification and the extension of sound
synthesis algorithm beyond what existing programs
offer can be significantly facilitated, by providing more
opportunities for further creative exploration.

For instance, as seen in the examples of granular
synthesis, to modify synchronous granular synthesis
algorithm to quasi-synchronous granular synthesis
algorithm can be easily achieved just by using Rand()
function and such a strategy can easily be reused if a
user want to randomize the pitch and the intervals in
waveset synthesis. In another instance, to extend some
granular synthesis algorithm so that it does harmonizes
the sounds of octave upper, the programming model
used in waveset harmonic distortions can be applied in
the almost same form.

Thus, LCSynth’s programming model for microsound
synthesis allows users to easily reuse programming
schema [6, p.23] in different synthesis techniques, once
users have obtained such programming schema. This
benefit for creative exploration in the level of
microsound time-scale can be difficult to achieve with
unit-generators, as this type of explorations involve the
manipulations of the entities that are normally
abstracted away inside unit-generators.

As discussed above, while it is still equipped the unit-
generators, LCSynth also contains significantly different
abstraction in its sound synthesis framework, which
allows a novel programming model that facilitate the
experiments in the level of microsound time-scale.

4.3. Two Different Abstractions

We described the difference between LCSynth’s
abstraction for microsound and that of the unit-generator
concept. As seen in Figure 2, which uses Samples
objects for wavetable synthesis, it is likely to possible to
implement other synthesis techniques other than
microsound synthesis techniques by introducing more
objects and functions into LCSynth. However, it may
still be beneficial to use the unit-generators in many
cases, since each of these two abstractions deal with
different problem domains.

The unit-generator concept aims to let each unit-
generator enclose a simple signal processing algorithm
and work as a basic building block, allowing
constitution of more complex synthesis algorithms by
interconnecting unit-generators. On the contrary,
LCSynth’s abstraction is rather focus on providing
objects and manipulations as building blocks to
compose microsound synthesis algorithms.

From such a perspective, the abstraction of the unit-
generator concept and that of microsounds in LCSynth
deal with different levels of sound synthesis, and it
would be fair to provide some features to let these two
abstractions collaborate with each other as seen in the
example in Figure 3; it is beneficial for users to provide
a framework design in which these two different
abstractions can coexist.

5. CONCLUSION

We described a novel programming model for
microsound synthesis in LCSynth with concrete
examples of granular synthesis and waveset synthesis.
Instead of encapsulating DSP algorithms within unit-
generators, LCSynth provides objects and manipulations
for microsound synthesis. We also discussed the benefit
of this programming model and why the traditional unit-
generator concept may not be truly appropriate for the
problem domain of microsound synthesis.

Such a novel programming model and the detailed
discussion on the difference between LCSynth’s
programming model and the unit-generator concept can
be beneficial for the further development of new sound
synthesis frameworks and computer music languages.

6. REFERENCES

[1] Bencina, R. Implementing Real-Time Granular
Synthesis. In Audio Anecdotes III, A.K Peters,
2006.

[2] Blackwell, A.F et al. The Abstraction is ‘an
Enemy’: Alternative Perspectives to
Computational Thinking. Proc. PPIG08, 2008.

[3] Blandford, A. et al. Evaluating System Utility
and Conceptual Fit Using CASSM. Intl.
Journal of Human-Computer Studies Vol.66,
pp.393-400, 2008.

[4] Brandt, E. Temporal Type Constructors for
Computer Music Programming. Ph.D Thesis,
Carnegie Melon University, 2002.

[5] Burroughs, N. et al. Flexible Scheduling for
DataFlow Audio Processing”. Proc. ICMC’05,
2005.

[6] De ́tienne, F. Software Design - Cognitive
Aspects. Springer Verlag, 2001.

[7] Gabor, D. Lectures on Communication Theory,
Technical Report 238, Research Laboratory of
Electronics. Massachusetts Institution of
Technology, 1952.

[8] Lippe, C. Real-time granular sampling using
the ircam signal processing workstation.
Contemporary Music Review, Vol.10, 1994.

[9] Mathews, M. V. An acoustic compiler for
music and psychological stimuli. Bell System
Technical Journal, Vol.40, 1961

[10] Matthews, M.V. et al. The Technology of
Computer Music. The MIT Press, 1969.

[11] Nishino, H and Osaka, N. LCSynth: A
Strongly-Timed Synthesis Language that
Integrates Objects and Manipulations for
Microsounds”, Proc. Sound and Music Com-
puting, 2012 .

[12] Roads, C. Microsound, The MIT Press, 2004.

[13] Roads, C. The Computer Music Tutorial, The
MIT Press, 1996.

[14] Wang, G. The Chuck Audio Programming
Language: A Strongly-Timed And On-the-Fly
Environ/Mentality, Ph.D Thesis, Princeton
University, 2008.

[15] Wilson, Scott et al. The SuperCollider Book.
The MIT Press, 2011.

[16] Wishart, T. Audible Design. Orpheus Books
LTD. 1994.

[17] Wishart, T. Audible Design: Appendix 2,
Orpheus Books LTD. 1994.

