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ABSTRACT 

In this paper, we describe a novel programming model 
for microsound synthesis techniques in LCSynth, a 
strongly-timed sound synthesis language, with concrete 
examples in granular synthesis and waveset synthesis. 
Instead of encapsulating microsound synthesis 
techniques inside unit-generators, LCSynth provides 
objects and manipulations for microsound synthesis. 

We discuss the benefits of such a language design for 
creative explorations in the domain of microsounds and 
why the traditional unit-generator concept may not be 
very appropriate for this domain. Such a discussion is 
beneficial to the further development of new sound 
synthesis frameworks and computer music languages. 

1. INTRODUCTION 

The unit-generator concept is one of the most important 
domain-specific core abstractions developed in the 
history of computer music. While there exist many 
varieties in how the concept is actually implemented and 
integrated into the language design, many computer 
music languages are built upon this concept even today. 

The unit-generator concept is still quite beneficial for 
various sound synthesis techniques. Its encapsulation of 
signal processing algorithms with the common 
interfaces makes it able to compose more complex 
signal processing modules as the interconnected unit-
generators. Most implementations, except very few, 
autonomously perform signal processing without 
explicit scheduling of the timing when to compute the 
output; such features significantly reduce the amount of 
effort that users must make in implementing various 
sound synthesis algorithms. 

However, it should be reconsidered if the traditional 
unit-generator concept is still appropriate for 
microsound synthesis techniques; some previous works 
discussed the related issues such as better software 
design or appropriate extensions to sound synthesis 
frameworks, which would be more suitable for 
microsound synthesis techniques [1,4]. 

In our previous publication [11], we argued the 
difficulty in programming microsound synthesis 
techniques, from the perspective of structural misfit [3] 
between the sound synthesis frameworks built on the 
unit-generator concept and the conceptualization of 
microsound synthesis by users. We discussed this 

conceptual gap as a significant cause of the difficulty 
involved in microsound synthesis programming in the 
unit-generator languages; this argument led to the design 
and the development of LCSynth, a strongly-timed 
sound synthesis language that integrates objects and 
manipulation for microsounds, based on the assumption 
that the removal of such a conceptual gap between the 
software frameworks and the user’s conceptualization 
can result in better language design that can facilitate 
microsound synthesis programming. 

In this paper, we first describe a novel programming 
model for microsound synthesis in LCSynth, by giving 
concrete examples for two microsound synthesis 
techniques (granular synthesis and waveset synthesis). 
Then, we discuss how such a design concept of 
LCSynth 	
 can facilitate creative explorations by 
computer musicians in microsound synthesis and why 
the traditional abstraction of the unit-generator concept 
may not be truly appropriate for this problem domain; 
the features provided by unit-generators, the 
encapsulation of signal processing algorithms and the 
autonomous timing behavior without explicit 
scheduling, can turn into significant obstacles when 
exploring microsound synthesis techniques.  

Such a discussion can be beneficial for both the further 
research in computer music software engineering and 
for the future development of more usable computer 
music programming languages. 

2. RELATED WORK 

2.1. Unit-Generator and Microsound Synthesis 

2.1.1. Unit-generator 

A unit-generator is “a software module that emits audio 
or control signals (envelopes) or modifies these signals” 
[13, p.787] and the concept first appeared in MUSIC-III 
language in 1960 [9]. In his book written in 1969, 
Mathews, the inventor of the unit-generator concept, 
describes that unit-generators perform “conceptually 
similar functions to standard electronic equipment used 
for electronic sound synthesis”[10, p.15]; thus, the 
original unit-generator concept is strongly associated 
with the electronic sound synthesis by electronic 
equipment.  

Once the graph of unit-generators is built and the sound 
synthesis starts, the unit-generators autonomously 



  
 

 

compute the required amount of samples for sound 
output when necessary; users do not have to explicitly 
specify the timing when to compute sound output from 
the unit-generators. Only few computer music 
environments, such as Chuck [14],  LCSynth [11], 
Marsyas [5], allow such explicit timing control. 

2.1.2. Microsound synthesis 

Dennis Gabor, a British physicist, in mid-1940s, first 
proposed the concept that originated the microsound 
synthesis techniques. Roads briefly describes the concept 
as “in Gabor’s conception, any sound can be 
decomposed into a family of functions obtained by time 
and frequency shift of a single Gaussian particle. 
Another way of saying this is that any sound can be 
decomposed into an appropriate combination of 
thousands of elementary grains” [12, p.57]. 

While Gabor’s theory is more strongly associated with 
time-frequency analysis rather than with computer music 
sound synthesis, microsound synthesis techniques we 
have today is derived from his concept that the entire 
sounds can be composed of short sound particles. 
Generally speaking, microsound synthesis techniques are 
realized by the overlap-add of such short sound particles 
with various waveforms, durations and intervals.  

Yet, it should be noted here that this concept of 
microsound is brought to computer music practices 
much later than the emergence of the unit-generator 
concept (in 1960). For instance, one of the earliest 
experiments in microsound synthesis was realized by 
Roads on a mainframe computer in 1974 [12, p.302]; the 
unit-generator concept could never have taken 
microsound synthesis into consideration when it was 
invented. 

2.1.3. The conceptual gap between the unit-generator 
concept and microsound synthesis techniques 

A significant difference can be found between the 
concept of the unit-generator and one of microsound 
synthesis. As Mathews mentioned, the former is 
modeled after electronic sound synthesis and is quite 
similar the ‘orthodox method’ that “starts with the 
assumption that the signal s is a function s(t) of time t”, 
which Gabor contrasted to his new theory [7]. Such a 
concept significantly differs from the concept of 
microsound synthesis, in which the entire sound consists 
of many short sound particles that overlap-add. 

In our previous publication [11], we discussed such a 
gap as a source of difficulty in programming microsound 
synthesis techniques as seen in the existing sound 
synthesis framework. By comparing the nine musical 
time-scales in computer music by Roads [12, p.3] and 
the representation within the unit-generator based sound 
synthesis framework, we assessed that the difficulty in 
programming microsound synthesis techniques is due to 
the lack of the counterpart entities to microsound time-
scale in the existing sound synthesis frameworks; 
generally speaking, it is considered that such an 
abstraction in software design incompatible with the 

user’s conceptualization can cause significant usability 
problems [2]. Blandford calls such a gap as a conceptual 
misfit in her framework for the analysis of usability 
problems called CASSM (Concept-based Analysis of 
Surface and Structural Misfits) [3]. 

2.2. LCSynth 

Based on the assessment as above, we developed a new 
sound synthesis language: LCSynth. As we argued in 
[11], the design of LCSynth aims to remove a 
conceptual misfit between the user’s conceptualization 
of microsound synthesis techniques and the traditional 
unit-generator languages, by directly integrating objects 
and manipulations for microsounds.  

LCSynth is a strongly-timed programming language. As 
seen in ChucK [14], strongly-timed programming is a 
variation of synchronous programming and is based on 
logical synchronous time rather than the passage of real-
time. A strongly-timed program explicitly advances a 
logical synchronous time and thus allows the precise 
timing behaviours in logical time, which is significantly 
desirable for computer music applications. 

LCSynth also has traditional unit-generators. Figure 1 
describes a simple sine wave oscillator instrument in 
LCSynth. In LCSynth, a sound synthesis module is 
defined as a synth object. The line 01-08 defines such a 
synth object, giving the name, SinA. In line 02-04, a 
unit-generator graph is defined inside the ugens block. 
In this example, the output from ~Sin (a sine wave 
oscillator) is connected to the input of ~DAC (sound 
output). The ~Sin object is given a name of sin so that it 
can be referred in the other part of the code. In line 05-
07, the synmain function for this synth object is defined. 
This function is immediately called when an instance of 
this synth object start playing. In this example, the 
synmain function has one argument freq with its default 
value 440. This value is used to set the frequency of sin 
by calling ‘setFreq’ method of ~Sin (line 06). 

 

 

 

 

 

As previously described, LCSynth integrates objects and 
manipulations for microsound synthesis. A Samples 
object in LCSynth is a counterpart entity for a short 
sound particle in the concept of microsound synthesis 
and contains arbitrary number of samples within. A 
Samples object is immutable and the samples within a 
Samples object cannot be changed after its creation. 
Instead, LCSynth also provides SampleBuffer objects as 
a mutable object. A SampleBuffer can be converted to 
Samples1 and vice versa.  

                                                             
1 The relationship between Samples and SampleBuffer in LCSynth is 
similar to the relationship between String and StringBuffer in Java. 

Figure 1. A simple sine wave instrument example in LCSynth 

 

01:synth SinA { 
02:  ugens { 
03:    sin:~Sin() -> ~DAC(); 
04:  } 
05:  synmain(freq = 440){ 
06:    sin.setFreq(freq); 
07:  } 
08:} 
 



  
 

 

 
 

 

Figure 2 above is another version of a simple sine wave 
oscillator instrument in LCSynth. Instead of unit-
generators, it involves Samples and SampleBuffer 
objects in sound synthesis, together with the strongly-
timed programming feature of LCSynth. In line 04-07, a 
sine wave table of 512 samples is created, using a 
SampleBuffer object. This table is converted to Samples 
object (line 09) and then resampled to fit its size to the 
given frequency2 (line 11).  In the main loop (line 13-
18), the samples within sin is first written out to DAC 
output by WirteDAC() function (line 16) and then the 
program sleeps until the next output timing3  (line 17). 
Since LCSynth is strongly-timed, this sleep time is in 
logical synchronous time and thus it assures sample-rate 
accuracy; thus, the program behaves as a sine wave 
oscillator instrument. 

Additionally, LCSynth also provides the means to 
stream the samples within Samples objects to the unit-
generators. Figure 3 briefly illustrates such an example. 
A ~Bridge unit-generator has its own internal buffer, 
which can be used to write the samples from Samples 
object. ~Bridge object streams the written samples to the 
other unit-generator. In line 20, the samples are written 
directly into the internal buffer of brg, an instance of 
~Bridge() unit-generator, by write() method and then 
immediately routed to ~ADSR object.  This write() 
method overlap-add the written samples as in 
WriteDAC() function. 

We will not particularly emphasize this feature in the 
later sections, as our focus is on the programming model 
for microsound synthesis in LCSynth. Yet, such a 
collaboration between the unit-generators and any 
synthesis algorithm is always possible via a ~Bridge 
object. 

                                                             
2 Since Samples is a immutable object, it returns a new Samples object, 
which is resampled to the given size. 
3  ‘now’ is a special variable that stands for the current system logical 
time. A thread can sleep by adding a duration value (such as 5::samp 
or 10::second) to ‘now’ as seen in Figure 2, line 17. 

 
 
 
 

2.3. LCSound 

 
 

LCSynth itself is a synthesis language, which focuses on 
the descrpitions of sound synthesis algorithms. 
LCSound is a simple score/instrument type of computer 
music language that encloses LCSynth within, which is 
developed as a test-bed for LCSynth.  

We briefly describe an example in LCSound in Figure 4.  
The file is separated into two sections, orchestra and 
score. The orchestra section (line01-10) is the section 
where the definitions of synth objects in LCSynth are 
described. As seen line 03-09, the orchestra section can 

01:synth SinA { 
02:  synmain(freq = 440){ 
03:    //create a sine wave table. 
04:    var buf = new SampleBuffer(512); 
05:    for (var i = 0; i < buf.size; i +=1){ 
06:      buf[i] = Sin(6.28318530718 / buf.size * i);  
07:    } 
08:    //convert it to a Samples object. 
09:    var tmp = buf.toSamples(); 
10:    //resample to the given frequency. 
11:    var sin = tmp.resample(44100.0 / freq); 
12:     
13:    while(true){ 
14:      //write the samples directly to DAC. 
15:      WriteDAC(sin); 
16:      //wait until the next DAC output timing. 
17:      now += (sin.size)::samp; 
18:    }  
19:  } 
20:} 
 

01:synth SinB { 
02:  ugens { 
03:    brg:~Bridge () -> env:~ADSR() -> ~DAC(); 
04:  } 
05:  synmain(freq = 440, dur){ 
05:    //create a sine wave table. 
06:    var buf = new SampleBuffer(1024); 
07:    for (var i = 0; i < buf.size; i +=1){ 
08:      buf[i] = Sin(6.28318530718 / buf.size * i);  
09:    } 
10:    var tmp = buf.toSamples(); 
11:    var sin = tmp.resample(44100.0/freq); 
12: 
13:    //trigger the ADSR envelope .   
14:    env.keyOn(); 
15:    //calculate the trigger-off and stop timing. 
16:    var keyOffTiming = now + 1::second; 
17:    var stopTime     = now + dur::second; 
18: 
19:    while(now < stopTime){ 
20:      brg.write(sin); 
21:      //calculate the next DAC output timing.  
22:      var nextTiming = now + (sin.size)::samp; 
23:      //check if we reach the key off timing. 
24:      if (nextTiming >= keyOffTiming){ 
25:        //wait until the key off timing. 
26:        now = keyOffTiming; 
27:        //release the envelope. 
28:        env.keyOff(); 
29:        //not to call keyOff() again. 
30:        keyOffTiming = stopTime; 
31:      } 
32:      //wait until the next DAC output timing. 
33:      now = nextTiming; 
34:    }  
35:  } 
36:}  

01:orchestra { 
03:  //create a sine wave table. 
04:  var buf = new SampleBuffer(512); 
05:  for (var i = 0; i < buf.size; i +=1){ 
06:    buf[i] = Sin(6.28318530718 / buf.size * i);  
07:  } 
08:  //set the sine wave table to a global variable. 
09:  global gSin = buf.toSamples(); 
10:   
11:  synth SinA { 
12:    synmain(freq = 440){ 
13:      //below is to access a global variable. 
14:      global gSin;  
15:      //resample to the given frequency. 
16:      var sin = gSin.resample(44100.0 / freq); 
17:      while(true){ 
18:        //write the samples directly to DAC. 
19:        WriteDAC(sin); 
20:        //wait until the next output timing. 
21:        now += (sin.size)::samp; 
22:      }  
23:    } 
24:  } 
25:} 
26:score 
27:{ 
28:  0.0:  SinA()           for 8.00, 
29:        SinA(freq:880)   for 4.00; 
30:  2.0:  SinA(freq:1760)  for 5.00; 
31:} 

Figure 2. An example code for a simple sine wave 
instrument without unit-generators in LCSynth 

Figure 3. An example of the combination of unit-
generators and Samples objects in LCSynth 

Figure 4. An example code of LCSound 

 



  
 

 

also contain the code fragments. In this example, a sine 
wave table is created and set to a global variable gSin so 
that it can be shared by the instances of SinA, which is 
defined between line 11-23. 

The defined synth objects can be used in Score section 
(line 26-31). First, the start time in second is placed 
before ‘:’ and then the name of synth object follows with 
the argument(s) given to its synmain function. As seen 
in Figure 4, LCSound supports the named parameters 
and the default value. The duration (in second) to play 
the synth object can be specified after ‘for’. The notes 
that shares the same start time can be juxtaposed after  
‘,’ (line 28-29). As above, LCSound is a typical 
score/instrument language, which is similar to CSound. 
The current version of LCSound can run both in real-
time and in non real-time. 

3. PROGRAMMING MICROSOUND 
SYNTHESIS IN LCSYNTH 

3.1. Granular synthesis  

3.1.1. Synchronous Granular Synthesis 
Synchronous granular synthesis is a kind of granular 
synthesis, in which “sounds results from one or more 
streams of grains. Within each stream, one grain follows 
another, with a delay period between the grains. 
Synchronous means that the grains follow each other at 
regular intervals” [12, p.93]. 

Figure 5 below describes an example code of 
synchronous granular synthesis in LCSynth. In this 
example, we use just one cycle of sine wave as a grain 
and set it to a wave table (line 01- 05). The synmain 
function of this example takes 3 arguments, dur for the 
duration of the entire sound, interval for the regular 
intervals between grains and gsize for the size of the 
grain in samples. Line 11 generates a grain by 
resampling the wave table. In the following main loop 
(line 12-15), first a single grain is written out for DAC 
output. Then the program sleeps for the interval (with 
sample-rate accuracy), and the next grain is then written 
out for DAC output. The overlap-add is performed 
automatically and thus synchronous granular synthesis 
can be performed by such a simple code.  

 
 

3.1.2. Quasi-synchronous granular synthesis 
Quasi-synchronous granular synthesis is another 
variation of granular synthesis, in which “the grains 

follow each other at unequal intervals, where a random 
deviation factor determines the irregularity” [12, p.93].  

Figure 6 below is an example of quasi-synchronous 
granular synthesis in LCSynth. As seen in this example, 
the modification from the previous example of 
synchronous granular synthesis is quite simple; only line 
08 is modified so that the intervals can be randomized 
between the values of interval1 to interval2. 
 

 
 
 

3.1.3. Time-stretching and Pitch-shifting 

While there exist phase-vocoding techniques for time-
stretching and pitch-shifting, microsound synthesis 
techniques called granular sampling [8] are also known 
as simple and computationally efficient techniques for 
time-stretching and pitch-shifting.  

 

 

 

 

 

 

 

 

 

Figure 7 above is a simple granular sampling example 
for time-stretch without pitch change.  In the following 
explanation, assume a ratio parameter of two is assumed 
(line 04) to time-stretch the samples to twice the length 
of the original. The main loop (line 08-16) first read 
100ms of samples from the buffer and applies a hanning 
window to create a single grain and then write it out to 
DAC. Then, the program sleeps for 50ms before the 
next grain (line 13) 4 . Yet, the reading position is 
advanced to the next position, but only by 50ms / 2 = 
25ms (line 14). As the reading position advances only at 
half the speed of the advance of the logical time, the 
sound can be time-stretched to twice as long as the 
original sound. 

On the contrary, pitch-shifting without changing of the 
duration of the sound is achieved by resampling of the 
original sound data by the unit of grains. Figure 8 shows 
                                                             
4 As the duration of grain is 100ms, this causes grains to overlap-add 
with the interval of every 50ms 

01:var tmp = new SampleBuffer(256); 
02:for (var i = 0; i < tmp.size; i +=1){ 
03:  tmp[i] = Sin(6.28318530718 / tmp.size * i);  
04:} 
05:global gTable = tmp.toSamples(); 
06: 
07:synth SyncGran { 
08:  synmain(dur, interval, gsize){ 
09:    global gTable; 
10:    var stopTime = now + dur::second; 
11:    var grain = gTable.resample(gsize); 
12:    while(now < stopTime){ 
13:      WriteDAC(grain); 
14:      now += interval::samp; 
15:    } 
16:  } 
17:} 
 

01:synth QuasiSyncGran { 
02:  synmain(dur, interval1, interval2, gsize){ 
03:    global gTable; 
04:    var stopTime = now + dur::second; 
05:    var grain = gTable.resample(gsize); 
06:    while(now < stopTime){ 
07:      WriteDAC(grain); 
08:      now += Rand(interval1, interval2)::samp; 
09:    } 
10:  } 
11:} 

Figure 5. A synchronous granular synthesis example in 
LCSynth 

Figure 6. A quasi-synchronous granular synthesis 
example in LCSynth 

Figure 7. A time-stretching example in LCSynth 

 

01:LoadSndFile(0, “test.aif"); 
02: 
03:synth TimeStrech { 
04:  synmain(ratio, dur){ 
05:    var stopTime = now + dur::second; 
06:    var pos = 0::second; 
07:    var window = GenWindow(100::ms, \hanning); 
08:    while(now < stopTime){ 
09:      var read = ReadBuf(bufno :0, dur: 100::ms,  
10:                         offset:pos); 
11:      var grain = read.applyEnv(window); 
12:      WriteDAC(grain); 
13:      now += 50::ms; 
14:      pos += 50::ms / ratio;  
15:    } 
16:  } 
17:} 



  
 

 

a simple example of this technique. This time, we 
change the number of samples to read from the buffer 
and then resample it to the desired grain size so that we 
can shift the pitch of the original sound; for instance, if 
882 samples of the sound data is read as a grain and then 
resample to 441 samples, the pitch of the grain is shifted 
an octave higher than the original in this example, since 
the sampling rate stays the same. 

 
 

3.2. Waveset Synthesis 

 

 

Waveset synthesis techniques also belong to the family 
of microsound synthesis techniques.  Waveset synthesis 
techniques are realized as various kinds of 
manipulations of short sound particles called wavesets. 
According to Wishart, a waveset is defined as a 
“distance from zero-crossing to a 3rd zero-crossing” 
whereas wavecycle is defined as “wavelength of sound, 
where clearly pitched” [17, p.50]. Figure 9 below taken 
from [17, p.50] briefly illustrates wavesets and 
wavecycles. As seen in this figure, a wavecycle can 
contain more than one wavesets, while the waveform 
and the length of a waveset can vary significantly. 
While there are a number of different waveset synthesis 
techniques 5 , we take 4 of these for the following 
implementation examples in LCSynth. 

3.2.1. Waveset inversion 

Waveset inversion is a technique that inverts a waveset 
in time domain as seen in Figure 10 (right), and “usually 

                                                             
5 For instance, 17 different techniques are available in Wishart’s 
Composer Desktop Project software in [11, p207]. 

produces an “edge” to the spectral characteristics of 
the sound” [16, p.42]. Figure 11 below describes an 
example of waveset inversion in LCSynth. First, a sound 
file  is loaded onto the buffer no.0 by LoadSndFile() 
function and then the wavesets are obtained from the 
buffer by ExtractWaveSets() function. This function 
returns an array of the wavesets extracted from the 
buffer. 

 

While it is possible to implement the algorithm to invert 
a waveset by accessing each sample within a Samples 
object and by using a SampleBuffer to generate an 
inverted waveset, Samples has invertWS(), a method that 
returns the inverted waveset as seen in Figure 10. Since 
Samples is immutable, invertWS() returns a new 
instance of Samples. In line 07-08, WriteDAC() method 
is used to output an inverted waveset to DAC and then 
the program sleeps for exactly the size of the samples in 
the logical synchronous time. This procedure is repeated 
until all the wavesets are inverted and output. 

 
 

3.2.2. Waveset transposition 

Waveset transposition is a technique that “substitutes N 
copies of a waveset in the place of M wavesets, for 
example 2 in the space of 1 or 1 in the space of 4, for 
doubling and quartering of frequency respectively”. [17, 
p.50]. Figure 10 (left) illustrates this waveset synthesis 
technique. 

Figure 12 in the next page shows two examples of 
waveset transposition, one that substitutes 2 wavesets 
for 1 (octave up) and one that substitutes 1 waveset for 2 
(octave down) as seen Figure 10(left). To change the 
size of a waveset, the resample() method can be used as 
in line 09 and 23. For waveset transposition to substitute 
2 wavesets for 1, it is enough to output the waveset 
resampled to the half size of the original twice as seen in 
line 10-13 and for waveset transposition to substitute 1 

00:synth PitchShift { 
00:  synmain(pitch, dur){ 
00:    var stopTime = now + dur::second; 
00:    var pos = 0::second; 
00:    var window = GenWindow(441::samp); 
00:    while(now < stopTime){ 
00:      var size = 441:: samp * pitch; 
00:      var read = ReadBuf(bufno :0  , dur: size,  
00:                         offset:pos); 
00:      read = read.resample(read.size / pitch); 
00:      var grain = read.applyEnv(window); 
00:      WriteDAC(grain); 
00:      now += 50::ms; 
00:      pos += 50::ms;  
00:    } 
00:  } 
00:} 

 

01:LoadSndFile(0, test.aif"); 
02:global wavesets = ExtractWaveSets(0); 
01:synth WSInvert { 
02:  synmain(){ 
03:    global wavesets; 
04:    for (var i = 0;i < wavesets.size; i += 1){ 
05:      var orig     = wavesets[i]; 
06:      var inverted = orig.invertWS(); 
07:      WriteDAC(inverted); 
08:      now += inverted.size::samp; 
09:    } 
10:  } 
11:} 

Figure 8. A pitch-shifting example in LCSynth 

 

Figure 9. Wavecycles and wavesets (taken from [17 ,  p.50]) 

 

Figure 11. A waveset inversion example in LCSynth 

Figure 10. the pictorial representations of waveset 
transposition (left) and waveset inversion (right) [17, p.50] 

 

 

 



  
 

 

for 2, the size of a waveset is doubled by resampling and 
then skip the next one after DAC output (line 23-26).  

 
 

3.2.3.  Waveset substitution 

 
 

Waveset substitution “replaces wavesets by a stipulated 
waveform of the sample amplitude, frequency and time 
span as the original waveset”[12, p.207]. Figure 13 (left) 
illustrates the waveset synthesis technique pictorially. In 
this example, the original wavesets are substituted with 
sine waves and square waves. The code for waveset 
substitution in LCSynth is shown in Figure 14. Suppose 
wavesets are already extracted from a buffer and set to a 
global variable wavesets before this code. First, a wave 
table of square wave is generated in line 01-07. This 
wave table is set to a global variable square in line 08. In 
the main loop (line 14-20), a waveset is taken from the 
array of wavesets one by one. Then, a square wave is 
resampled to the same size as the original waveset and 
amplified to the same amplitude (line 16-17). This new 
waveset is used for substitution and written to DAC 
output, followed by sleeping until the timing to schedule 
the next waveset (line 18-19); thus, a waveset 
substitution is performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.4. Waveset harmonic distortion 
 

 
 
 

Waveset harmonic distortion “superimposes N  
harmonics on the waveset fundamental with a scaling M 
relative to the previous harmonic” [12, p.207].  Figure 
13 (right) illustrates this technique pictorially.  

We describe an example of waveset harmonic distortion 
in LCSynth in Figure 15. In line 06-08, wavesets for the 
2nd and 3rd harmonics are generated from the original by 
resampling. These three wavesets are then weighted by 
the given arguments (line 10-12). First, the original 
waveset is written out to DAC (line 14) and the waveset 
of 2nd harmonics is written out exactly at the same 
timing. Then, the 2nd harmonics is written again, but this 
time it is given an offset of its own sample size (line17). 
The results in this waveset is written at the timing right 
after the 1st one. The same procedure is applied to the 3rd 
harmonics (line 19-21). 

In line 23, the program wait until the next timing 
schedule by sleeping for the duration of the original 
wavesets; thus waveset synthesis can be realized. 

01:LoadSndFile(0, “test.aif"); 
02:global wavesets = ExtractWaveSets(0); 
03://waveset transposition (octave up) 
04:synth WSTransA { 
05:  synmain(){ 
06:    global wavesets; 
07:    for (var i = 0; i < wavesets.size; i += 1){ 
08:      var orig = wavesets[i]; 
09:      var octup = orig.resample(orig.size / 2); 
10:      WriteDAC(octup); 
11:      now += octup.size::samp; 
12:      WriteDAC(octup); 
13:      now += octup.size::samp; 
14:    } 
15:  } 
16:} 
17://waveset transposition (octave down) 
18:synth WSTransB { 
19:  synmain(){ 
20:    global wavesets; 
21:    for (var i = 0;i < wavesets.size - 1; i += 2){ 
22:      var orig = wavesets[i]; 
23:      var octdown = orig.resample(orig.size * 2); 
24:      WriteDAC(octdown); 
25:      now += octdown.size::samp; 
26:    } 
27:  } 
28:} 

01:synth WSHarmDist { 
02:  synmain(weight1, weight2, wieght3){ 
03:    global wavesets; 
04:    for(var i = 0;i < wavesets.size; i += 1){ 
05:      //the original, 2nd and 3rd harmonics.  
06:      var orig = wavesets[i]; 
07:      var oct1 = orig.resample(orig.size / 2); 
08:      var oct2 = orig.resample(orig.size / 3); 
09:      //weight each of them. 
10:      orig = orig.amplify(weight1); 
11:      oct1 = oct1.amplify(weight2); 
12:      oct2 = oct2.amplify(wieght3); 
13:      //write out the original. 
14:      WriteDAC(orig); 
15:      //write out the 2nd harmonics. 
16:      WriteDAC(oct1); 
17:      WriteDAC(oct1, offset: oct1.size::samp); 
18:      //write out the 3rd harmonics. 
19:      WriteDAC(oct2); 
20:      WriteDAC(oct2, offset: oct2.size::samp); 
21:      WriteDAC(oct2, offset: oct2.size::samp * 2); 
22:      //wait until the next scheduling timing. 
23:      now += orig.size::samp; 
24:    } 
25:  } 
26:} 

Figure 12. A waveset transposition example in LCSynth 

 

Figure 14. a waveset substitution example in LCSynth 

 

Figure 15. A waveset harmonic distortion example in LCSynth 

 Figure 13. waveset substation and waveset harmonic 
distortions (taken from [17, p.50]) 

01:var sqbuf = new SampleBuffer(256); 
02:for(var i = 0; i < sqbuf.size / 2; i += 1){ 
03:  sqbuf[i] = 1.0; 
04:} 
05:for(var i = sqbuf.size/2; i < sqbuf.size; i += 1){ 
06:  sqbuf[i] = -1.0; 
07:} 
08:global square = sqbuf.toSamples(); 
09: 
10:synth WSSubst { 
11:  synmain(){ 
12:    global wavesets; 
13:    global square; 
14:    for(var i = 0;i < wavesets.size; i += 1){ 
15:      var orig = wavesets[i]; 
16:      var tmp  = square.resample(orig.size); 
17:      var out  = tmp.amplify(orig.maxAmp()); 
18:      WriteDAC(out); 
19:      now += out.size::samp; 
20:    } 
21:  } 
22:} 



  
 

 

4. DISCUSSION 

4.1. Unit-Generators Considered Harmful for 
Microsound Synthesis 

In a sound synthesis framework built upon the unit-
generator concept, DSP algorithms are encapsulated 
inside the unit-generators with common interfaces that 
allow the composition of the unit-generators to describe 
more complex sound synthesis algorithms. Many sound 
synthesis frameworks, except a very few, provide 
autonomous behaviours for the timing of when the 
computations of sound output must be performed, so 
that users do not have to explicitly schedule the timing.  

While these features are quite beneficial for many sound 
synthesis algorithms, such an abstraction also revokes 
the access to the details required for the experiments in 
the level of microsound time-scale from users. The 
samples that are routed between unit-generators are 
normally hidden or hardly accessible from the users and 
no direct counterpart entities for short sound particles, 
e.g. grains or wavesets, are provided. Thus, in such a 
framework, even a very simple microsound synthesis 
technique may involve a certain degree of complexity, 
regardless of its conceptual simplicity. 

For instance, it is very common in many granular 
synthesis techniques to apply an envelope made of some 
window function to a fragment of samples taken from 
some sound data and to overlap-add them to constitute 
the processed sound. Such kind of task can also be seen 
in the time-stretching example (Figure 7) and the pitch-
shifting example (Figure 8). Yet, to perform this simple 
task only within the unit-generator-based synthesis 
framework, each single grain needs to be modeled as a 
note-level object and overlap-add of grains is realized 
by simultaneously playing such note-level objects. 
Roads describes such a typical strategy in [12, p.91].  

While the lack of precise timing control is due to the 
implementation rather than the unit-generator concept 
itself, autonomous behavior in sample computation 
timing makes it harder to schedule grains with precise 
timing and results in inaccurate sound output in many 
existing synthesis framework. Such an inaccuracy in 
timing can be clearly audible to human perception; as 
such frameworks revoke the access to the explicit timing 
control, it can often involve cumbersome programming 
patterns to compensate imprecise timing behavior. For 
instance in SuperCollider [15], it frequently involves a 
programming pattern to schedule a synth object ahead of 
time, with offset to the actual timing and to use 
OffsetOut unit-generator for better accuracy in 
microsound synthesis. 

Furthermore, even though it is also possible to enclose 
the whole algorithm of a microsound synthesis 
technique within a unit-generator to achieve accurate 
sound output, such an encapsulation makes it impossible 
to modify or extend the encapsulated algorithms by 
users for further creative experiments. 

As above, while the encapsulation of DSP algorithms 
and the autonomous behaviour are important features of 

the unit-generator-based sound synthesis frameworks, 
such features turn into significant obstacles when users 
want to explore in the domain of microsounds; the 
entities of microsounds and the synthesis algorithms are 
hidden from inside within the unit-generators by 
encapsulation. Autonomous behaviour in computation 
timing also makes it hard to control the behaviour of the 
unit-generators with sample-rate accuracy. However, 
users need to access these hidden details to modify and 
to extend the synthesis algorithm of microsound 
synthesis techniques for creative exploration; thus, the 
difficulty in implementing microsound synthesis 
techniques in the unit-generator based sound synthesis 
frameworks is indeed caused by the features of the unit-
generators themselves, even though hiding such details 
is beneficial for many other sound synthesis techniques. 

4.2. The Benefits of LCSynth’s Language Design and 
Its Programming Model for Microsound Synthesis 

On the contrary, the design of LCSynth is designed to 
avoid hiding such details and makes them accessible to 
users. It provides the entities of microsounds as Samples 
object and SampleBuffer object with many related 
functions that manipulate these objects. At the same 
time, strongly-timed programming supports the precise 
timing behavior required for accurate sound rendering 
results. LCSynth also takes it into consideration in its 
design to automatically perform overlap-add operation 
to Samples objects and to schedule them in the future 
timings. 

As programmers “use knowledge from at least two 
domains, the application (or problem) domain and the 
computing domain, between which they establish a 
mapping”[6, p22] in programming activity, it is quite 
beneficial to provide objects and functions in a 
computer music language, which can be considered as 
the direct counterparts for the entities in the user’s 
conceptualization of microsound synthesis; mapping 
between the program code (the computing domain) and 
the conceptualization of synthesis algorithm (the 
application domain) can be made a lot easier without 
involving incompatible mapping. 

Moreover, since LCSynth doesn’t have to encapsulate 
microsound synthesis algorithms as seen in unit-
generators, the modification and the extension of sound 
synthesis algorithm beyond what existing programs 
offer can be significantly facilitated, by providing more 
opportunities for further creative exploration. 

For instance, as seen in the examples of granular 
synthesis, to modify synchronous granular synthesis 
algorithm to quasi-synchronous granular synthesis 
algorithm can be easily achieved just by using Rand() 
function and such a strategy can easily be reused if a 
user want to randomize the pitch and the intervals in 
waveset synthesis. In another instance, to extend some 
granular synthesis algorithm so that it does harmonizes 
the sounds of octave upper, the programming model 
used in waveset harmonic distortions can be applied in 
the almost same form.  



  
 

 

Thus, LCSynth’s programming model for microsound 
synthesis allows users to easily reuse programming 
schema [6, p.23] in different synthesis techniques, once 
users have obtained such programming schema. This 
benefit for creative exploration in the level of 
microsound time-scale can be difficult to achieve with 
unit-generators, as this type of explorations involve the 
manipulations of the entities that are normally 
abstracted away inside unit-generators. 

As discussed above, while it is still equipped the unit-
generators, LCSynth also contains significantly different 
abstraction in its sound synthesis framework, which 
allows a novel programming model that facilitate the 
experiments in the level of microsound time-scale. 

4.3. Two Different Abstractions 

We described the difference between LCSynth’s 
abstraction for microsound and that of the unit-generator 
concept. As seen in Figure 2, which uses Samples 
objects for wavetable synthesis, it is likely to possible to 
implement other synthesis techniques other than 
microsound synthesis techniques by introducing more 
objects and functions into LCSynth. However, it may 
still be beneficial to use the unit-generators in many 
cases, since each of these two abstractions deal with 
different problem domains. 

The unit-generator concept aims to let each unit-
generator enclose a simple signal processing algorithm 
and work as a basic building block, allowing 
constitution of more complex synthesis algorithms by 
interconnecting unit-generators. On the contrary, 
LCSynth’s abstraction is rather focus on providing 
objects and manipulations as building blocks to 
compose microsound synthesis algorithms.  

From such a perspective, the abstraction of the unit-
generator concept and that of microsounds in LCSynth 
deal with different levels of sound synthesis, and it 
would be fair to provide some features to let these two 
abstractions collaborate with each other as seen in the 
example in Figure 3; it is beneficial for users to provide 
a framework design in which these two different 
abstractions can coexist. 

5. CONCLUSION 

We described a novel programming model for 
microsound synthesis in LCSynth with concrete 
examples of granular synthesis and waveset synthesis. 
Instead of encapsulating DSP algorithms within unit-
generators, LCSynth provides objects and manipulations 
for microsound synthesis. We also discussed the benefit 
of this programming model and why the traditional unit-
generator concept may not be truly appropriate for the 
problem domain of microsound synthesis.  

Such a novel programming model and the detailed 
discussion on the difference between LCSynth’s 
programming model and the unit-generator concept can 
be beneficial for the further development of new sound 
synthesis frameworks and computer music languages. 
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